6 CONCLUSION
In this paper, the problem of RF pulses noise contam-
inating the EMG signal acquired in fRMI scanner is
addressed. Thanks to its description in the frequency
domain and to its modelization using Harmonic plus
Noise model, it was possible to subtract it from EMG
signal, rmaking it exploitable for further analysis and
processing.
ACKNOWLEDGEMENTS
The authors are thankful to the team ’Biomechan-
ics, Imagery and Physiology Movement Analysis’ of
Movement and Sport Research Centre (CeRSM) at
Paris 10 University, for asking the resolve the problem
of EMG enhancement and providing the experimental
data.
REFERENCES
Ben Jebara, S. (2014). Electromyogram signal enhance-
ment in frmi noise using spectral subtraction. In
Proceedings of the 22nd European Signal Processing
Conference, pages 1980–1984.
Bernstein, M. A., King, K. F., and Zhou, X. J. (2004).
Handbook of MRI pulse sequences. Elsevier.
De Luca, C. J., Gilmore, L. D., Kuznetsov, M., and Roy,
S. H. (2010). Filtering the surface emg signal: Move-
ment artifact and baseline noise contamination. Jour-
nal of biomechanics, 43(8):1573–1579.
Dougherty, J. B. (2010). A novel and comprehensive artifact
reduction strategy for EMG collected during fMRI at
3 Tesla. PhD thesis, Drexel University.
El Tatar, A. (2013). Caract
´
erisation et mod
´
elisation
des potentiels induits par les commutations des
gradients de champ magn
´
etique sur les signaux
´
electrophysiologiques en IRM. PhD thesis, Universit
´
e
de Technologie de Compi
`
egne.
Ganesh, G., Franklin, D. W., Gassert, R., Imamizu, H., and
Kawato, M. (2007). Accurate real-time feedback of
surface emg during fmri. Journal of neurophysiology,
97(1):912–920.
Garreffa, G., Carnı, M., Gualniera, G., Ricci, G., Bozzao,
L., De Carli, D., Morasso, P., Pantano, P., Colonnese,
C., Roma, V., et al. (2003). Real-time mr artifacts fil-
tering during continuous eeg/fmri acquisition. Mag-
netic resonance imaging, 21(10):1175–1189.
Hoffmann, A., J
¨
ager, L., Werhahn, K., Jaschke, M.,
Noachtar, S., and Reiser, M. (2000). Electroen-
cephalography during functional echo-planar imag-
ing: detection of epileptic spikes using post-
processing methods. Magnetic Resonance in
Medicine: An Official Journal of the Interna-
tional Society for Magnetic Resonance in Medicine,
44(5):791–798.
Hornak, J. P. (2006). The basics of mri. http://www. cis. rit.
edu/htbooks/mri.
Lu, G., Brittain, J. S., Holland, P., Yianni, J., Green, A. L.,
Stein, J. F., and Wang, S. (2009). Removing ecg noise
from surface emg signals using adaptative filtering.
Neuroscience letters, 462(1):14–19.
Pantazis, Y. (2010). Decomposition of AM-FM signals with
applications in speech processing. PhD thesis, Uni-
versity of Crete.
Thakor, N. V. and Zhu, Y.-S. (1991). Applications of adap-
tive filtering to ecg analysis: noise cancellation and
arrhythmia detection. IEEE Transactions on biomedi-
cal engineering, 38(8):785–794.
RF Pulses Modelization for EMG Signal Denoising in fRMI Environment
115