Binas, J., Neil, D., Liu, S.-C., and Delbruck, T. (2017).
Ddd17: End-to-end davis driving dataset. arXiv pre-
print arXiv:1711.01458.
Brandli, C., Berner, R., Yang, M., Liu, S.-C., and Delbruck,
T. (2014). A 240× 180 130 db 3 µs latency global
shutter spatiotemporal vision sensor. IEEE Journal of
Solid-State Circuits, 49(10):2333–2341.
Chen, N. F. (2017). Pseudo-labels for supervised
learning on event-based data. arXiv preprint
arXiv:1709.09323.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In Computer Vision and
Pattern Recognition, 2005. CVPR 2005. IEEE Com-
puter Society Conference on, volume 1, pages 886–
893. IEEE.
Delbruck, T. and Lang, M. (2013). Robotic goalie with 3 ms
reaction time at 4% cpu load using event-based dyna-
mic vision sensor. Frontiers in neuroscience, 7:223.
Delbr
¨
uck, T. and Mead, C. (1989). An electronic photore-
ceptor sensitive to small changes in intensity. In Ad-
vances in neural information processing systems, pa-
ges 720–727.
Freund, Y., Schapire, R. E., et al. (1996). Experiments with
a new boosting algorithm. In Icml, volume 96, pages
148–156. Bari, Italy.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vi-
sion meets robotics: The kitti dataset. The Internatio-
nal Journal of Robotics Research, 32(11):1231–1237.
Girshick, R. (2015). Fast r-cnn. arXiv preprint
arXiv:1504.08083.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern re-
cognition, pages 580–587.
Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields,
binocular interaction and functional architecture in
the cat’s visual cortex. The Journal of physiology,
160(1):106–154.
Izhikevich, E. M. (2004). Which model to use for cortical
spiking neurons? IEEE transactions on neural net-
works, 15(5):1063–1070.
Kingma, D. P. and Ba, J. (2014). Adam: A method for sto-
chastic optimization. arXiv preprint arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
Lagorce, X., Orchard, G., Galluppi, F., Shi, B. E., and Be-
nosman, R. B. (2017). Hots: a hierarchy of event-
based time-surfaces for pattern recognition. IEEE
transactions on pattern analysis and machine intelli-
gence, 39(7):1346–1359.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Li, C., Brandli, C., Berner, R., Liu, H., Yang, M., Liu, S.-
C., and Delbruck, T. (2015). An rgbw color vga rol-
ling and global shutter dynamic and active-pixel vi-
sion sensor.
Lichtsteiner, P., Posch, C., and Delbruck, T. (2008). A 128×
128 120 db 15 µs latency asynchronous temporal con-
trast vision sensor. IEEE journal of solid-state cir-
cuits, 43(2):566–576.
Liu, S.-C., Delbruck, T., Indiveri, G., Douglas, R., and
Whatley, A. (2015). Event-based neuromorphic sys-
tems. John Wiley & Sons.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot mul-
tibox detector. In European conference on computer
vision, pages 21–37. Springer.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. In Computer vision, 1999. The pro-
ceedings of the seventh IEEE international conference
on, volume 2, pages 1150–1157. Ieee.
Maqueda, A. I., Loquercio, A., Gallego, G., Garcıa, N.,
and Scaramuzza, D. (2018). Event-based vision meets
deep learning on steering prediction for self-driving
cars. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 5419–
5427.
Masland, R. H. (2012). The neuronal organization of the
retina. Neuron, 76(2):266–280.
Masquelier, T., Guyonneau, R., and Thorpe, S. J. (2008).
Spike timing dependent plasticity finds the start of re-
peating patterns in continuous spike trains. PloS one,
3(1):e1377.
Moeys, D. P., Corradi, F., Kerr, E., Vance, P., Das, G., Neil,
D., Kerr, D., and Delbr
¨
uck, T. (2016). Steering a
predator robot using a mixed frame/event-driven con-
volutional neural network. In Event-based Control,
Communication, and Signal Processing (EBCCSP),
2016 Second International Conference on, pages 1–8.
IEEE.
Mueggler, E., Gallego, G., and Scaramuzza, D. (2015).
Continuous-time trajectory estimation for event-based
vision sensors. In Robotics: Science and Systems XI,
number EPFL-CONF-214686.
Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N.
(2015). Converting static image datasets to spiking
neuromorphic datasets using saccades. Frontiers in
neuroscience, 9:437.
Posch, C. and Matolin, D. (2011). Sensitivity and unifor-
mity of a 0.18µm cmos temporal contrast pixel ar-
ray. In 2011 IEEE International Symposium of Cir-
cuits and Systems (ISCAS), pages 1572–1575. IEEE.
Posch, C., Matolin, D., and Wohlgenannt, R. (2011). A
qvga 143 db dynamic range frame-free pwm image
sensor with lossless pixel-level video compression and
time-domain cds. IEEE Journal of Solid-State Cir-
cuits, 46(1):259–275.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Convolutional Neural Network for Detection and Classification with Event-based Data
207