REFERENCES
Brase, C. H. and Brase, C. P. (2011). Understandable statis-
tics: Concepts and methods. Cengage Learning.
Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly
detection: A survey. AMC Computing Surveys (CSUR),
41(3):15.
Dasgupta, D. and Forrest, S. (1996). Novelty detection in
time series data using ideas from immunology. In Pro-
ceedings of the International Conference on Intelligent
Systems, pages 82–87.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996).
From data mining to knowledge discovery in databases.
AI Magazine, 17(3):37.
Fuchs, J., Isenberg, P., Bezerianos, A., and Keim, D. (2017).
A systematic review of experimental studies on data
glyphs. IEEE Transactions on Visualization and Com-
puter Graphics, 23(7):1863–1879.
Gershon, N. (1998). Visualization of an imperfect world.
IEEE Computer Graphics and Applications, 18(4):43–
45.
Hodge, V. and Austin, J. (2004). A survey of outlier de-
tection methodologies. Artificial Intelligence Review,
22(2):85–126.
Inselberg, A. and Dimsdale, B. (1987). Parallel coordinates
for visualizing multi-dimensional geometry. In Com-
puter Graphics 1987, pages 25–44. Springer.
Keim, D., Andrienko, G., Fekete, J.-D., G
¨
org, C., Kohlham-
mer, J., and Melan
c¸
on, G. (2008). Visual analytics:
Definition, process, and challenges. In Information
Visualization, pages 154–175. Springer.
Keim, D., Kohlhammer, J., Ellis, G., and Mansmann, F.
(2010). Mastering The Information Age – Solving
Problems with Visual Analytics. Eurographics Associa-
tion.
MacEachren, A. M., Robinson, A., Hopper, S., Gardner,
S., Murray, R., Gahegan, M., and Hetzler, E. (2005).
Visualizing geospatial information uncertainty: What
we know and what we need to know. Cartography and
Geographic Information Science, 32(3):139–160.
MaxPlanck (2018). Max Planck Institute for Ornithology.
Movebank.
https://www.movebank.org/
. [Online;
accessed 30-November-2018].
Rehm, F., Klawonn, F., and Kruse, R. (2007). A novel
approach to noise clustering for outlier detection. Soft
Computing, 11(5):489–494.
Skeels, M., Lee, B., Smith, G., and Robertson, G. G. (2010).
Revealing uncertainty for information visualization.
Information Visualization, 9(1):70–81.
Sky (2018). Sky Go - Moenchengladbach vs Dortmund.
http://www.skygo.sky.de/
. [Online; accessed 30-
November-2018].
Stein, M., Janetzko, H., Breitkreutz, T., Seebacher, D.,
Schreck, T., Grossniklaus, M., Couzin, I. D., and Keim,
D. A. (2016). Director’s cut: Analysis and annota-
tion of soccer matches. IEEE Computer Graphics and
Applications, 36(5):50–60.
Stein, M., Janetzko, H., Lamprecht, A., Breitkreutz, T., Zim-
mermann, P., Goldl
¨
ucke, B., Schreck, T., Andrienko,
G., Grossniklaus, M., and Keim, D. A. (2018). Bring
it to the pitch: Combining video and movement data
to enhance team sport analysis. IEEE Transactions on
Visualization and Computer Graphics, 24(1):13–22.
Tunguz, T. (2018). The Cost Of Bad Data Is The Illu-
sion Of Knowledge.
http://tomtunguz.com/cost-
of-bad-data-1-10-100/
. [Online; accessed 30-
November-2018].
UNDP (2018). United Nations Statistical Commission
and Economic Commission for Europe glossary of
terms on statistical data editing.
https://webgate.
ec.europa.eu/fpfis/mwikis/essvalidserv/
images/3/37/UN_editing_glossary.pdf
. [On-
line; accessed 30-November-2018].
Wang, X.-M., Zhang, T.-Y., Ma, Y.-X., Xia, J., and Chen, W.
(2016). A survey of visual analytic pipelines. Journal
of Computer Science and Technology, 31(4):787–804.
Wickham, H., Hofmann, H., Wickham, C., and Cook, D.
(2012). Glyph-maps for visually exploring temporal
patterns in climate data and models. Environmetrics,
23(5):382–393.
Wikelski, M. and Kays, R. (2014). Movebank: archive,
analysis and sharing of animal movement data. Hosted
by the Max Planck Institute for Ornithology. World
Wide Web Electronic Publication.
Wills, S. and Roecker, S. (2017). Statistics for Soil
Survey.
http://ncss-tech.github.io/stats_
for_soil_survey/chapters/9_uncertainty/
Uncert_val.html#1_introduction
. [Online;
accessed 30-November-2018].
Breaking the Curse of Visual Data Exploration: Improving Analyses by Building Bridges between Data World and Real World
27