REFERENCES
Ahmad, M., Alqarni, M. A., Khan, A. M., Hussain, R.,
Mazzara, M., and Distefanob, S. (2019). Segmented
and non-segmented stacked denoising autoencoder for
hyperspectral band reduction. Optik - International
Journal for Light and Electron Optics, 180:370–378.
Ahmad, M., Bashir, A. K. , and Khan, A. M. (2017a). Me-
tric similarity regularizer to enhance pixel similarity
performance for hyperspectral unmixing. Optik - In-
ternational Journal for Light and Electron Optics,
140(C):86–95.
Ahmad, M., haq, I. U., and Qaisaro, M. (2011). Aik method
for band clustering using stat istics of correlation and
dispersion matrix. In 2011 International Conference
on Information Communication and Management, pa-
ges 114–1180.
Ahmad, M., Khan, A. M., and Hussain, R. (2017b).
Graph-based spatial-spectral feature learning for hy-
perspectral image classification. IET Image Proces-
sing, 11(12):1310–1316.
Ahmad, M., Khan, A. M., Hussain, R., Protasov, S., Chow,
F., and Khattak, A. M. (2016). Unsupervised geo-
metrical feature learning from hyperspectral data. In
2016 IEEE Symposium Series on Computational In-
telligence (SSCI), pages 1–6.
Ahmad, M., Protasov, S., Khan, A. M., Hussain, R., Khat-
tak, A. M., and K han, W. A. (2018). Fuzziness-based
active learning framework to enhance hyperspectral
image classification performance for discriminative
and generative classifiers. PLoS ONE, 13:e0188996.
Arguello, F. and Heras, H. B. (2015). Elm-based spectral–
spatial classification of hyperspectral images using ex-
tended morphological profiles and composite feature
mappings. Int. J. Remote Sens., 36(2):645–664.
Chen, C., Li, W., Su, H., and Liu, K. (2014). Spectral-
spatial classification of hyperspectral image based on
kernel extreme learning machine. Remote Sensing,
6(6):5795–5814.
Datasets, H. accessed on may, 2018. http:
//www.ehu.eus/ccwintco/index.php/Hyperspectral
Remote Sensing Scenes.
Ding, S., Zhao, H., Zhang, Y., Xu, Z., and Nie, R. ( 2015).
Extreme learning machine: Algorithm, theory and ap-
plications. Artif. Intell. Rev., 44(1):103–115.
Dora, B. H., Arguello, F., and Pablo, Q.-B. (2014). Ex-
ploring elm-based spatial spectral classification of hy-
perspectral images. International Journal of Remote
Sensing, 35(2):401–423.
Hao, L., Chang, L., Cong, Z., Zhe, L., and Chengyin, L.
(2017). Hyperspectral image classification with spa-
tial fi ltering and 2,1 norm. In Sensors.
He, L., Li, J., Li u, C., and Li, S. (2018). Recent advances on
spectralspatial hyperspectral image classification: An
overview and new guidelines. IEEE Transactions on
Geoscience and Remote Sensing, 56(3):1579–1597.
Huang, G. B., Chen, L., and Siew, C.-K. (2006). Universal
approximation using i ncremental constructive feed-
forward networks with random hidden nodes. Trans.
Neur. Netw., 17(4):879–892.
Hughes, G. (1968). On the mean accuracy of st at istical pat-
tern recognizers. IEEE Transactions on Information
Theory, 14(1):55–63.
Johnson, W. and Lindenstrauss, J. (1984). Extensions of
lipschitz maps into a hilbert space. 26:189–206.
Kasun, L., Zhou, H., Huang, G. B., and Vong, C.-M.
(2013). Representational learning with elms for big
data. 28:31–34.
Li, J., Bioucas-Dias, J. M., and Plaza, A. (2013). Spectral-
spatial classification of hyperspectral data using
loopy belief propagation and active learning. IEEE
Transactions on Geoscience and Remote Sensing,
51(2):844–856.
Liu, C., He, L., Li, Z., and Li, J. (2018). Feature-driven
active learning for hyperspectral image classification.
IEEE Transactions on Geoscience and Remote Sen-
sing, 56(1):341–354.
Mura, M. D., Benediktsson, J. A., Waske, B., and Bruz-
zone, L. (2010). Morphological at tribute profiles for
the analysis of very high resolution i mages. IEEE
Transactions on Geoscience and Remote Sensing,
48(10):3747–3762.
Ren, J., Zabalza, J., Marshall, S., and Zheng, J. (2014).
Effective feature extraction and data reduction in re-
mote sensing using hyperspectral imaging [applica-
tions corner]. IEEE Signal Processing Magazine,
31(4):149–154.
Shen, Y., Xu, J., Li, H., and Xiao, L. (2016). Elm-based
spectral-spatial classification of hyperspectral images
using bilateral filtering information on spectral band-
subsets. In 2016 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), pages 497–
500.
Zhou, Y., Peng, J., and Chen, C. L. P. (2015). Extreme
learning machine with composite kernels for hyper-
spectral image classification. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Re-
mote Sensing, 8(6):2351–2360.