Bobrow, B. J., W Spaite, D. W., Berg, R. A., Stolz, U.,
Sanders, A. B., Kern, K., Vadeboncoeur, T. F., Clark,
L. L., Gallagher, J., Stapczynski, J. S., Lovecchio,
F., Mullins, T. J., Humble, W. O., and Ewy, G. A.
(2010). Chest compression-only cpr by lay rescu-
ers and survival from out-of-hospital cardiac arrest.
JAMA : the journal of the American Medical Asso-
ciation, 304:1447–54.
Dami, F., Carron, P.-N., Praz, L., Fuchs, V., and Yersin,
B. (2010). Why bystanders decline telephone cardiac
resuscitation advice. Academic Emergency Medicine,
17(9):1012–1015.
de Gauna, S. R., Gonzlez-Otero, D. M., Ruiz, J., Chicote,
B., and Vidales, N. (2015). Alternatives to estimate
the compression depth from the acceleration signal
during cardiopulmonary resuscitation. In 2015 Com-
puting in Cardiology Conference (CinC), pages 561–
564.
Ferreira, L. R., Kapps, G. W., de Oliveira, J. C., and Shir-
mohammadi, S. (2017). An instrument for measuring
force vector and frequency of cpr compressions. In
2017 IEEE International Instrumentation and Measu-
rement Technology Conference (I2MTC), pages 1–5.
Frisch, A., Das, S., Reynolds, J., De La Torre, F., Hodgins,
J., and Carlson, J. (2014). Analysis of smartphone vi-
deo footage classifies chest compression rate during
simulated cpr. American Journal of Emergency Medi-
cine, 32(9):1136–1138.
Gonzlez-Otero, D., Ruiz de Gauna, S., Ruiz, J., Ayala,
U., and Alonso, E. (2012). Automatic detection of
chest compression pauses using the transthoracic im-
pedance signal. In 2012 Computing in Cardiology,
pages 21–24.
Hayashi, H. and Minazuki, A. (2017). Development
of a cardiopulmonary resuscitation feedback lear-
ning device using maltisensor. In 2017 14th
International Conference on Electrical Engineer-
ing/Electronics, Computer, Telecommunications and
Information Technology (ECTI-CON), pages 473–
476.
Higashi, E., Fukagawa, K., Kasimura, R., Kanamori, Y.,
Minazuki, A., and Hayashi, H. (2017). Development
and evaluation of a corrective feedback system using
augmented reality for the high-quality cardiopulmo-
nary resuscitation training.
Iwami, T., Kitamura, T., Kawamura, T., Mitamura, H., Na-
gao, K., Takayama, M., Seino, Y., Tanaka, H., No-
nogi, H., Yonemoto, N., and Kimura, T. (2012). Chest
compression–only cardiopulmonary resuscitation for
out-of-hospital cardiac arrest with public-access defi-
brillation. Circulation, 126(24):2844–2851.
Kang, M. K., Oh, J. H., and Kim, T. (2010). Chest compres-
sion depth measurement using iruwb for cpr (cardio-
pulmonary resuscitation). In 2010 IEEE Asia Pacific
Conference on Circuits and Systems, pages 496–499.
Kim, Y., Yu, B. G., Oh, J. H., and Kim, T. W. (2017). Novel
chest compression depth measurement sensor using ir-
uwb for improving quality of cardiopulmonary resus-
citation. IEEE Sensors Journal, 17(10):3174–3183.
Loconsole, C., Frisoli, A., Semeraro, F., Stroppa, F., Ma-
stronicola, N., Filippeschi, A., and Marchetti, L.
(2016). Relive: A markerless assistant for cpr trai-
ning. IEEE Transactions on Human-Machine Sys-
tems, 46(5):755–760.
Meinich-Bache, Ø., Engan, K., Eftestøl, T., and Austvoll,
I. (2017). Detecting chest compression depth using
a smartphone camera and motion segmentation. In
Lecture Notes in Computer Science, volume 10270,
pages 53–64.
Panicker, M. S. A., Frigui, H., and Calhoun, A. W. (2015).
Identification of cardio-pulmonary resuscitation (cpr)
scenes in medical simulation videos using spatio-
temporal gradient orientations. In 2015 International
Conference on Image Processing Theory, Tools and
Applications (IPTA), pages 365–369.
Song, Y., Oh, J., and Chee, Y. (2015). A new chest compres-
sion depth feedback algorithm for high-quality cpr
based on smartphone. Telemedicine journal and e-
health, 21:36–41.
Torney, H., O’Hare, P., Davis, L., Delafont, B., Bond,
R., McReynolds, H., McLister, A., McCartney, B.,
Maio, R. D., and McEneaney, D. (2016). A usability
study of a critical man machine interface: Can lay-
person responders perform optimal compression rates
when using a public access defibrillator with automa-
ted real-time feedback during cardiopulmonary resus-
citation? IEEE Transactions on Human-Machine Sy-
stems, 46(5):749–754.
Yamamoto, K. and Ohmura, R. (2015). Towards on-site in-
struction of cardio pulmonary resuscitation with wea-
rable sensors. In 2015 IEEE/SICE International Sym-
posium on System Integration (SII), pages 387–392.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
496