REFERENCES
Bookstein, F. L. (1989). Principal warps: Thin-plate splines
and the decomposition of deformations. IEEE Tran-
sactions on pattern analysis and machine intelligence,
11(6):567–585.
Caelles, S., Maninis, K.-K., Pont-Tuset, J., Leal-Taix
´
e,
L., Cremers, D., and Van Gool, L. (2016). One-
shot video object segmentation. arXiv preprint
arXiv:1611.05198.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2016). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. arXiv preprint
arXiv:1606.00915.
Cheng, M.-M., Mitra, N. J., Huang, X., Torr, P. H., and
Hu, S.-M. (2015). Global contrast based salient region
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 37(3):569–582.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
Endres, I. and Hoiem, D. (2010). Category independent ob-
ject proposals. In European Conference on Computer
Vision, pages 575–588. Springer.
Fei-Fei, L., Fergus, R., and Perona, P. (2006). One-shot
learning of object categories. IEEE transactions on
pattern analysis and machine intelligence, 28(4):594–
611.
Fu, H., Xu, D., and Lin, S. (2017). Object-based multiple
foreground segmentation in rgbd video. IEEE tran-
sactions on image processing: a publication of the
IEEE Signal Processing Society.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern re-
cognition, pages 580–587.
Husain, F., Dellen, B., and Torras, C. (2015). Consistent
depth video segmentation using adaptive surface mo-
dels. Cybernetics, IEEE Transactions on, 45(2):266–
278.
Khoreva, A., Perazzi, F., Benenson, R., Schiele, B., and
Sorkine-Hornung, A. (2016). Learning video ob-
ject segmentation from static images. arXiv preprint
arXiv:1612.02646.
Konecn
`
y, J. and Hagara, M. (2014). One-shot-learning ge-
sture recognition using hog-hof. Journal of Machine
Learning Research, 15:2513–2532.
Koo, S., Lee, D., and Kwon, D.-S. (2014). Incremental ob-
ject learning and robust tracking of multiple objects
from rgb-d point set data. Journal of Visual Commu-
nication and Image Representation, 25(1):108–121.
Lee, Y. J., Kim, J., and Grauman, K. (2011). Key-segments
for video object segmentation. In 2011 International
Conference on Computer Vision, pages 1995–2002.
IEEE.
Li, Y., Hou, X., Koch, C., Rehg, J. M., and Yuille, A. L.
(2014). The secrets of salient object segmentation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 280–287.
Lin, X., Casas, J., and Pard
`
as, M. (2016). 3d point cloud
segmentation oriented to the analysis of interactions.
In The 24th European Signal Processing Conference
(EUSIPCO 2016). Eurasip.
Lin, X., Casas, J. R., and Pard
`
as, M. (2018). Temporally
coherent 3d point cloud video segmentation in generic
scenes. IEEE Transactions on Image Processing.
Movahedi, V. and Elder, J. H. (2010). Design and perceptual
validation of performance measures for salient object
segmentation. In Computer Vision and Pattern Re-
cognition Workshops (CVPRW), 2010 IEEE Computer
Society Conference on, pages 49–56. IEEE.
Shi, J., Yan, Q., Xu, L., and Jia, J. (2016). Hierarchical
image saliency detection on extended cssd. IEEE tran-
sactions on pattern analysis and machine intelligence,
38(4):717–729.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
(2016). Matching networks for one shot learning. In
Advances in Neural Information Processing Systems,
pages 3630–3638.
One Shot Learning for Generic Instance Segmentation in RGBD Videos
239