dimensional data. Proceedings of the National
Academy of Sciences, 100(10):5591–5596.
Espadoto, M., Rodrigues, F. C. M., and Telea, A. C. (2018).
Projection-based dense map evaluation. http://
snip.li/8pa.
Faloutsos, C. and Lin, K. (1995). FastMap: A fast algo-
rithm for indexing, data-mining and visualization of
traditional and multimedia datasets. ACM SIGMOD
Newsletter, 24(2):163–174.
F
´
eraud, R. and Cl
´
erot, F. (2002). A methodology to ex-
plain neural network classification. Neural Networks,
15(2):237–246.
Hamel, L. (2006). Visualization of support vector machines
with unsupervised learning. In Proc. Computational
Intelligence and Bioinformatics and Computational
Biology (CIBCB). IEEE.
Hoffman, P. and Grinstein, G. (2002). A survey of visual-
izations for high-dimensional data mining. In Fayyad,
U., Grinstein, G., and Wierse, A., editors, Proc. Infor-
mation Visualization in Data Mining and Knowledge
Discovery, pages 47–82. Morgan Kaufmann.
Hyvarinen, A. (1999). Fast ICA for noisy data using gaus-
sian moments. In Proc. IEEE ISCAS, volume 5, pages
57–61.
Joia, P., Coimbra, D., Cuminato, J. A., Paulovich, F. V., and
Nonato, L. G. (2011). Local affine multidimensional
projection. IEEE TVCG, 17(12):2563–2571.
Jolliffe, I. T. (1986). Principal Component Analysis and
Factor Analysis. In Principal component analysis,
pages 115–128. Springer.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv:1412.6980v9 [cs.LG].
Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 1097–1105.
Kruskal, J. B. (1964). Multidimensional scaling by opti-
mizing goodness of fit to a nonmetric hypothesis. Psy-
chometrika, 29(1):1–27.
LeCun, Y. and Cortes, C. (2018). MNIST handwritten digits
dataset. http://yann.lecun.com/exdb/mnist.
Liu, S., Maljovec, D., Wang, B., Bremer, P.-T., and
Pascucci, V. (2015). Visualizing high-dimensional
data: Advances in the past decade. IEEE TVCG,
23(3):1249–1268.
Manning, C. D., Sch
¨
utze, H., and Raghavan, P. (2008). In-
troduction to Information Retrieval, volume 39. Cam-
bridge University Press.
Martins, R., Coimbra, D., Minghim, R., and Telea, A.
(2014). Visual analysis of dimensionality reduction
quality for parameterized projections. Computers &
Graphics, 41:26–42.
McInnes, L. and Healy, J. (2018). UMAP: Uniform Mani-
fold Approximation and Projection for Dimension Re-
duction. arXiv:1802.03426v1 [stat.ML].
Migut, M. A., Worring, M., and Veenman, C. J. (2015).
Visualizing multi-dimensional decision boundaries
in 2D. Data Mining and Knowledge Discovery,
29(1):273–295.
Minghim, R., Paulovich, F. V., and Lopes, A. A. (2006).
Content-based text mapping using multi-dimensional
projections for exploration of document collections.
In Proc. SPIE, volume 6060. Intl. Society for Optics
and Photonics.
Nonato, L. and Aupetit, M. (2018). Multidimensional
projection for visual analytics: Linking techniques
with distortions, tasks, and layout enrichment. IEEE
TVCG. DOI:10.1109/TVCG.2018.2846735.
Paulovich, F. V., Eler, D. M., Poco, J., , Botha, C. P.,
Minghim, R., and Nonato, L. G. (2011). Piecewise
laplacian-based projection for interactive data explo-
ration and organization. Computer Graphics Forum,
30(3):1091–1100.
Paulovich, F. V. and Minghim, R. (2006). Text map ex-
plorer: a tool to create and explore document maps.
In Proc. Intl. Conference on Information Visualisation
(IV), pages 245–251. IEEE.
Paulovich, F. V., Silva, C. T., and Nonato, L. G. (2010).
Two-phase mapping for projecting massive data sets.
IEEE TVCG, 16(6):1281–1290.
Pekalska, E., de Ridder, D., Duin, R. P. W., and Kraaijveld,
M. A. (1999). A new method of generalizing Sammon
mapping with application to algorithm speed-up. In
Proc. ASCI, volume 99, pages 221–228.
Rauber, P. E., Fadel, S. G., Falcao, A. X., and Telea, A. C.
(2017a). Visualizing the hidden activity of artificial
neural networks. IEEE TVCG, 23(1):101–110.
Rauber, P. E., Falc
˜
ao, A. X., and Telea, A. C. (2017b). Pro-
jections as visual aids for classification system design.
Information Visualization, 17(4):282–305.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why
should I trust you?: Explaining the predictions of any
classifier. In Proc. ACM SIGMOD KDD, pages 1135–
1144.
Rodrigues, F. C. M., Hirata Jr, R., and Telea, A. C.
(2018). Image-based visualization of classifier deci-
sion boundaries. In Proc. SIBGRAPI. in press.
Roweis, S. T. and Saul, L. L. K. (2000). Nonlinear dimen-
sionality reduction by locally linear embedding. Sci-
ence, 290(5500):2323–2326.
Sch
¨
olkopf, B., Smola, A., and M
¨
uller, K. (1997). Kernel
principal component analysis. In Proc. International
Conference on Artificial Neural Networks, pages 583–
588. Springer.
Sorzano, C., Vargas, J., and Pascual-Montano, A. (2014).
A survey of dimensionality reduction techniques.
arXiv:1403.2877 [stat.ML].
Tenenbaum, J. B., Silva, V. D., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. JMLR, 9(Nov):2579–2605.
van der Maaten, L. and Postma, E. (2009). Dimensionality
reduction: A comparative review. Tech. report TiCC
TR 2009-005, Tilburg University, Netherlands.
Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-
MNIST: A Novel Image Dataset for Benchmarking
Machine Learning Algorithms. arXiv:1708.07747v2
[cs.LG].
Visual Analytics of Multidimensional Projections for Constructing Classifier Decision Boundary Maps
37