pean Conference on Computer Vision, pages 115–129.
Springer.
Baptista, R., Antunes, M., Aouada, D., and Ottersten, B.
(2017). Video-based feedback for assisting physical
activity. In Proceedings of the 12th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume 5:
VISAPP, (VISIGRAPP 2017), pages 274–280.
Caterisano, A., Moss, R., Pellinger, T., Woodruff, K., Le-
wis, V., Booth, W., and Khadra, T. (2002). The effect
of back squat depth on the EMG activity of 4 superfi-
cial hip and thigh muscles. The Journal of Strength &
Conditioning Research, 16(3):428–432.
Gal, N., Andrei, D., Neme, D. I., Ndan, E., and Stoicu-
Tivadar, V. (2015). A Kinect based intelligent e-
rehabilitation system in physical therapy. Digital He-
althcare Empowering Europeans, pages 489–493.
Gorsuch, J., Long, J., Miller, K., Primeau, K., Rutledge, S.,
Sossong, A., and Durocher, J. J. (2013). The effect of
squat depth on multiarticular muscle activation in col-
legiate cross-country runners. The Journal of Strength
& Conditioning Research, 27(9):2619–2625.
Huang, T.-C., Cheng, Y.-C., and Chiang, C.-C. (2013). Au-
tomatic Dancing Assessment Using Kinect. In Advan-
ces in Intelligent Systems and Applications-Volume 2,
pages 511–520. Springer.
Kang, S.-Y., Choung, S.-D., and Jeon, H.-S. (2016). Modi-
fying the hip abduction angle during bridging exercise
can facilitate gluteus maximus activity. Manual ther-
apy.
Khan, N. M., Lin, S., Guan, L., and Guo, B. (2014). A
visual evaluation framework for in-home physical re-
habilitation. In Multimedia (ISM), 2014 IEEE Inter-
national Symposium on Multimedia, pages 237–240.
IEEE.
Lin, T.-Y., Hsieh, C.-H., and Lee, J.-D. (2013). A kinect-
based system for physical rehabilitation: Utilizing tai
chi exercises to improve movement disorders in pa-
tients with balance ability. In 2013 7th Asia Modelling
Symposium, pages 149–153. IEEE.
L
¨
osch, C., Weigert, M., Nitzsche, N., Richter, J., Wiede,
C., and Schulz, H. (2018). Einsatz und Bedeutung
von Seilz
¨
ugen in der Medizinischen Trainingstherapie
am Beispiel H
¨
uft-Totalendoprothese Eine Experten-
perspektive. In Bewegungstherapie und Gesundheits-
sport.
Muneesawang, P., Khan, N. M., Kyan, M., Elder, R. B.,
Dong, N., Sun, G., Li, H., Zhong, L., and Guan, L.
(2015). A machine intelligence approach to virtual
ballet training. IEEE MultiMedia, 22(4):80–92.
Richter, J., Wiede, C., Apitzsch, A., Nitzsche, N., L
¨
osch, C.,
Weigert, M., Kronfeld, T., Weisleder, S., and Hirtz, G.
(2017a). Assisted Motion Control in Therapy Envi-
ronments Using Smart Sensor Technology: Challen-
ges and Opportunities. In Ambient Assisted Living, 9.
AAL-Kongress, Frankfurt/M, Germany, April 20 - 21,
2016, pages 119–132. Springer Verlag.
Richter, J., Wiede, C., Shinde, B., and Hirtz, G. (2017b).
Motion Error Classification for Assisted Physical
Therapy - A Novel Approach using Incremental Dyn-
amic Time Warping and Normalised Hierarchical Ske-
leton Joint Data. In Proceedings of the 6th Internati-
onal Conference on Pattern Recognition Applications
and Methods - Volume 1: ICPRAM, pages 281–288.
Shotton, J., Girshick, R., Fitzgibbon, A., Sharp, T., Cook,
M., Finocchio, M., Moore, R., Kohli, P., Criminisi,
A., Kipman, A., et al. (2013). Efficient human pose
estimation from single depth images. IEEE Transacti-
ons on Pattern Analysis and Machine Intelligence,
35(12):2821–2840.
Su, C.-J., Chiang, C.-Y., and Huang, J.-Y. (2014). Kinect-
enabled home-based rehabilitation system using Dy-
namic Time Warping and fuzzy logic. Applied Soft
Computing, 22:652–666.
Tak, Y.-S., Rho, S., and Hwang, E. (2011). Mo-
tion Sequence-Based Human Abnormality Detection
Scheme for Smart Spaces. Wireless Personal Commu-
nications, 60(3):507–519.
Tormene, P., Giorgino, T., Quaglini, S., and Stefanelli, M.
(2009). Matching incomplete time series with dyn-
amic time warping: an algorithm and an application
to post-stroke rehabilitation. Artificial intelligence in
medicine, 45(1):11–34.
Yurtman, A. and Barshan, B. (2013). Detection and evalu-
ation of physical therapy exercises by dynamic time
warping using wearable motion sensor units. In Infor-
mation Sciences and Systems 2013, pages 305–314.
Springer.
Zhao, W., Lun, R., Espy, D. D., and Reinthal, M. A. (2014).
Rule based realtime motion assessment for rehabilita-
tion exercises. In IEEE Symposium on Computational
Intelligence in Healthcare and e-health (CICARE),
2014, pages 133–140. IEEE.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
504