dos Santos Amorim, E. P., Brazil, E. V., II, J. D., Joia, P.,
Nonato, L. G., and Sousa, M. C. (2012). ilamp: Ex-
ploring high-dimensional spacing through backward
multidimensional projection. In IEEE VAST, pages
53–62. IEEE Computer Society.
Halit, C. and Capin, T. (2011). Multiscale motion saliency
for keyframe extraction from motion capture se-
quences. Computer Animation and Virtual Worlds,
22(1):3–14.
Huang, K.-S., Chang, C.-F., Hsu, Y.-Y., and Yang, S.-
N. (2005). Key probe: a technique for anima-
tion keyframe extraction. The Visual Computer,
21(8):532–541.
Igarashi, T., Moscovich, T., and Hughes, J. F. (2005).
Spatial keyframing for performance-driven anima-
tion. In Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics Symposium on Computer An-
imation, SCA ’05, pages 107–115, New York, NY,
USA. ACM.
Jenkins, O. C. and Matari
´
c, M. J. (2004). A spatio-temporal
extension to isomap nonlinear dimension reduction.
In Proceedings of the Twenty-first International Con-
ference on Machine Learning, ICML ’04, pages 56–,
New York, NY, USA. ACM.
Jin, C., Fevens, T., and Mudur, S. (2012). Optimized
keyframe extraction for 3d character animations.
Computer Animation and Virtual Worlds, 23(6):559–
568.
Joia, P., Paulovich, F., Coimbra, D., Cuminato, J., and
Nonato, L. (2011). Local affine multidimensional pro-
jection. Visualization and Computer Graphics, IEEE
Transactions on, 17(12):2563–2571.
Lim, I. S. and Thalmann, D. (2001). Key-posture extrac-
tion out of human motion data by curve simplification.
Annual Reports of the Research Reactor Institute, Ky-
oto University. Kyoto University. Swiss Federal Inst.
Technol. (EPFL), CH-1015 Laussane, Switzerland.
Lowe, D. G. (1987). Three-dimensional object recogni-
tion from single two-dimensional images. Artif. In-
tell., 31(3):355–395.
Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. Science,
290(5500):2323–2326.
Safonova, A., Hodgins, J. K., and Pollard, N. S. (2004).
Synthesizing physically realistic human motion in
low-dimensional, behavior-specific spaces. ACM
Trans. Graph., 23(3):514–521.
Smith, L. I. (2002). A tutorial on principal components
analysis. Technical report, Cornell University, USA.
Tejada, E., Minghim, R., and Nonato, L. G. (2003). On
improved projection techniques to support visual ex-
ploration of multidimensional data sets. Information
Visualization, 2(4):218–231.
Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000).
A global geometric framework for nonlinear dimen-
sionality reduction. Science, 290(5500):2319–2323.
Togawa, H. and Okuda, M. (2005). Position-based
keyframe selection for human motion animation. In
Parallel and Distributed Systems, 2005. Proceedings.
11th International Conference on, volume 2, pages
182–185.
van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of Machine Learning Research,
9:2579–2605.
Wilke, B. and Semwal, S. K. (2017). Generative ani-
mation in a physics engine using motion captures.
In Proceedings of the 12th International Joint Con-
ference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications - Volume
1: GRAPP, (VISIGRAPP 2017), pages 250–257. IN-
STICC, SciTePress.
Xiao, J., Zhuang, Y., Yang, T., and Wu, F. (2006). An effi-
cient keyframe extraction from motion capture data.
In Nishita, T., Peng, Q., and Seidel, H.-P., editors,
Computer Graphics International, volume 4035 of
Lecture Notes in Computer Science, pages 494–501.
Springer.
Zhang, Y. and Cao, J. (2015). A novel dimension reduc-
tion method for motion capture data and application
in motion segmentation. In Parallel and Distributed
Systems, 2005. Proceedings. 11th International Con-
ference on, volume 12, pages 6751–6760.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
40