REFERENCES
A. Vemula, K. M. and OhSocial, J. (2017). Attention: Mo-
deling attention in human crowds. International Con-
ference on Robotics and Automation.
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-
Fei, L., and Savarese, S. (2016). Social Lstm: Human
Trajectory Prediction in Crowded Spaces. In Compu-
ter Vision and Pattern Recognition, pages 961–971.
Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., and Sava-
rese, S. (2016). Knowledge transfer for scene-specific
motion prediction. In European Conference on Com-
puter Vision, pages 697–713.
Cho, K., van Merrienboer, B., G
¨
ulc¸ehre, C¸ ., Bougares,
F., Schwenk, H., and Bengio, Y. (2014). Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.
Fernando, T., Denman, S., McFadyen, A., Sridharan, S.,
and Fookes, C. (2017a). Tree memory networks for
modelling long-term temporal dependencies. arXiv
preprint arXiv:1703.04706.
Fernando, T., Denman, S., Sridharan, S., and Fookes, C.
(2017b). Soft + hardwired attention: An lstm fra-
mework for human trajectory prediction and abnormal
event detection. arXiv preprint arXiv:1702.05552.
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi,
A. (2018). Social gan: Socially acceptable trajectories
with generative adversarial networks. In The IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 2255–2264.
Helbing, D. and Molnar, P. (1995). Social force model for
pedestrian dynamics. Physical review E, 51(5):4282.
Huang, S., Li, X., Zhang, Z., He, Z., Wu, F., Liu, W., Tang,
J., and Zhuang, Y. (2016). Deep learning driven visual
path prediction from a single image. IEEE Transacti-
ons on Image Processing, 25(12):5892–5904.
Kalman, R. E. (1960). A new approach to linear filtering
and prediction problems. Journal of basic Engineer-
ing, 82(1):35–45.
Karasev, V., Ayvaci, A., Heisele, B., and Soatto, S. (2016).
Intent-aware long-term prediction of pedestrian mo-
tion. In International Conference on Robotics and Au-
tomation, pages 2543–2549.
Keller, C. G. and Gavrila, D. M. (2014). Will the pede-
strian cross? a study on pedestrian path prediction.
IEEE Transactions on Intelligent Transportation Sys-
tems, 15(2):494–506.
Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. (2014). Semi-supervised learning with
deep generative models. In Advances in Neural Infor-
mation Processing Systems, pages 3581–3589.
Kitani, K. M., Ziebart, B. D., Bagnell, J. A., and Hebert, M.
(2012). Activity forecasting. In European Conference
on Computer Vision, pages 201–214.
Kooij, J. F. P., Schneider, N., Flohr, F., and Gavrila, D. M.
(2014). Context-based pedestrian path prediction.
In European Conference on Computer Vision, pages
618–633.
Lecun, Y., Boser, B., Denker, J., Henderson, D., Howard,
R., Hubbard, W., and Jackel, L. (1989). Backpropa-
gation Applied to handwritten Zip Code Recognition.
Neural Computation, 1(4):541–551.
Lee, N., Choi, W., Vernaza, P., Choy, C. B., Torr, P. H. S.,
and Chandraker, M. (2017). Desire: Distant future
prediction in dynamic scenes with interacting agents.
In Computer Vision and Pattern Recognition, pages
336–345.
Ma, W., Huang, D., Lee, N., and Kitani, K. M. (2017). Fore-
casting interactive dynamics of pedestrians with ficti-
tious play. In Computer Vision and Pattern Recogni-
tion, pages 774–782.
Park, H. S., Hwang, J. J., Niu, Y., and Shi, J. (2016). Ego-
centric future localization. In Computer Vision and
Pattern Recognition, pages 4697–4705.
Rehder, E. and Kloeden, H. (2015). Goal-directed pede-
strian prediction. In Workshop on International Con-
ference on Computer Vision, pages 139–147.
Robicquet, A., Sadeghian, A., Alahi, A., and Savarese, S.
(2016). Learning social etiquette: Human trajectory
understanding in crowded scenes. In European Con-
ference on Computer Vision, pages 549–565.
Robinson, J. W. and Hartemink, A. J. (2009). Non-
stationary dynamic bayesian networks. In Advances in
Neural Information Processing Systems, pages 1369–
1376.
SchneiderNicolas and M., G. (2013). Pedestrian path pre-
diction with recursive bayesian filters: A comparative
study. In German Conference on Pattern Recognition,
pages 174–183.
S.Hochreiter (1997). LONG SHORT-TERM MEMORY.
Neural Computation, 9(8):1735–1780.
Su, S., Hong, J. P., Shi, J., and Park, H. S. (2017). Predicting
behaviors of basketball players from first person vi-
deos. In Computer Vision and Pattern Recognitionr,
pages 1502–1510.
Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent
magnitude. COURSERA: Neural networks for ma-
chine learning.
Vemula, A., Muelling, K., and Oh, J. (2017). Modeling
cooperative navigation in dense human crowds. In In-
ternational Conference on Robotics and Automation,
pages 1685–1692. IEEE.
Walker, J., Gupta, A., and Hebert, M. (2014). Patch to the
future: Unsupervised visual prediction. In Computer
Vision and Pattern Recognition, pages 3302–3309.
Xie, D., Todorovic, S., and Zhu, S. C. (2013). Inferring
‘Dark Matter’ and ‘Dark Energy’ from videos. In
International Conference on Computer Vision, pages
2224–2231.
Yamaguchi, K., Berg, A. C., Ortiz, L. E., and Berg, T. L.
(2011). Who are you with and where are you going?
In CVPR 2011, pages 1345–1352.
Yi, S., Li, H., and Wang, X. (2016). Pedestrian behavior un-
derstanding and prediction with deep neural networks.
In European Conference on Computer Vision, pages
263–279.
Ziebart, B., Ratliff, N., Gallagher, G., Mertz, C., Peterson,
K., Bagnell, J., Hebert, M., Dey, A., and Srinivasa,
S. (2009). Planning-based prediction for pedestrians.
In International Conference on Intelligent Robots and
Systems, pages 3931–3936.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
26