would like to improve LiDAR / Optic fusion thanks
to the visibility estimation.
ACKNOWLEDGEMENT
This study has been carried out with financial sup-
port from the French State, managed by the French
National Research Agency (ANR GOTMI) (ANR-16-
CE33-0010-01). This project has also received fun-
ding from the European Union’s Horizon 2020 re-
search and innovation programme under the Marie
Skłodowska-Curie grant agreement No 777826.
REFERENCES
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H. (1996).
The quickhull algorithm for convex hulls. ACM Tran-
sactions on Mathematical Software, 22(4):469–483.
Benenson, R., Omran, M., Hosang, J., and Schiele, B.
(2014). Ten years of pedestrian detection, what have
we learned? In ECCV European Conference on Com-
puter Vision, pages 613–627.
Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P.,
Guennebaud, G., Levine, J. A., Sharf, A., and Silva,
C. T. (2017). A survey of surface reconstruction from
point clouds. In Computer Graphics Forum, pages
301–329.
Bevilacqua, M., Aujol, J.-F., Biasutti, P., Br
´
edif, M., and
Bugeau, A. (2017). Joint inpainting of depth and re-
flectance with visibility estimation. ISPRS Journal of
the Photogrammetry, Remote Sensing and Spatial In-
formation Sciences, 125(1):16–32.
Bouchiba, H., Groscot, R., Deschaud, J.-E., and Goulette,
F. (2017). High quality and efficient direct rendering
of massive real-world point clouds. In Eurographics
Annual Conference of the European Association for
Computer Graphics, pages 1–6.
Eigen, D., Puhrsch, C., and Fergus, R. (2014). Depth map
prediction from a single image using a multi-scale
deep network. In Advances in neural information pro-
cessing systems, pages 2366–2374.
Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977).
An algorithm for finding best matches in logarithmic
expected time. ACM Transactions on Mathematical
Software, 3(3):209–226.
Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. (2013). Vi-
sion meets robotics: The KITTI dataset. IJRR Inter-
national Journal of Robotics Research, 32(11):1231–
1237.
Guislain, M., Digne, J., Chaine, R., and Monnier, G. (2017).
Fine scale image registration in large-scale urban LI-
DAR point sets. CVIU Computer Vision and Image
Understanding, 157(12):90–102.
Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H.,
Li, G., and Chen, B. (2013). L1-medial skeleton of
point cloud. In ACM Transactions on Graphics, pages
65–72.
Katz, S., Tal, A., and Basri, R. (2007). Direct visibility of
point sets. In ACM Transactions on Graphics, pages
24–36.
Lafarge, F. and Alliez, P. (2013). Surface reconstruction
through point set structuring. In Computer Graphics
Forum, pages 225–234.
Li, Y., Wu, X., Chrysathou, Y., Sharf, A., Cohen-Or, D.,
and Mitra, N. J. (2011a). Globfit: Consistently fitting
primitives by discovering global relations. In ACM
Transactions on Graphics, pages 52–64.
Li, Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B., and
Mitra, N. J. (2011b). 2D-3D fusion for layer decom-
position of urban facades. In ICCV IEEE Internatio-
nal Conference on Computer Vision, pages 882–889.
Lipman, Y., Cohen-Or, D., Levin, D., and Tal-Ezer, H.
(2007). Parameterization-free projection for geome-
try reconstruction.
Maddern, W., Pascoe, G., Linegar, C., and Newman, P.
(2017). 1 year, 1000 km: The Oxford RobotCar data-
set. The International Journal of Robotics Research,
36(1):3–15.
Mastin, A., Kepner, J., and Fisher, J. (2009). Automatic re-
gistration of LIDAR and optical images of urban sce-
nes. In CVPR IEEE Conference on Computer Vision
and Pattern Recognition, pages 2639–2646.
Mehra, R., Tripathi, P., Sheffer, A., and Mitra, N. J. (2010).
Visibility of noisy point cloud data. Computers and
Graphics, 34(3):219–230.
Monszpart, A., Mellado, N., Brostow, G. J., and Mitra, N. J.
(2015). RAPter: rebuilding man-made scenes with
regular arrangements of planes. In ACM Transaction
on Graphics, pages 103:1–103:12.
Paparoditis, N., Papelard, J.-P., Cannelle, B., Devaux, A.,
Soheilian, B., David, N., and Houzay, E. (2012). Ste-
reopolis II: A multi-purpose and multi-sensor 3D mo-
bile mapping system for street visualisation and 3D
metrology. Revue franc¸aise de photogramm
´
etrie and
de t
´
el
´
ed
´
etection, 200:69–79.
Pintus, R., Gobbetti, E., and Agus, M. (2011). Real-time
rendering of massive unstructured raw point clouds
using screen-space operators. In Eurographics Inter-
national Conference on Virtual Reality, Archaeology
and Cultural Heritage, pages 105–112.
Schnabel, R., Degener, P., and Klein, R. (2009). Completion
and reconstruction with primitive shapes. In Compu-
ter Graphics Forum, pages 503–512.
Shalom, S., Shamir, A., Zhang, H., and Cohen-Or, D.
(2010). Cone carving for surface reconstruction. In
ACM Transactions on Graphics, pages 150–160.
Tagliasacchi, A., Olson, M., Zhang, H., Hamarneh, G., and
Cohen-Or, D. (2011). VASE: Volume-Aware Sur-
face Evolution for Surface Reconstruction from In-
complete Point Clouds. In Computer Graphics Forum,
pages 1563–1571.
Xiong, S., Zhang, J., Zheng, J., Cai, J., and Liu, L. (2014).
Robust surface reconstruction via dictionary learning.
In ACM Transactions on Graphics, page 201.
Zach, C., Pock, T., and Bischof, H. (2007). A globally op-
timal algorithm for robust TV-L 1 range image inte-
gration. In ICCV IEEE International Conference on
Computer Vision, pages 1–8.
Visibility Estimation in Point Clouds with Variable Density
35