REFERENCES
Aijazi, A. K., Checchin, P., and Trassoudaine, L. (2013).
Segmentation based classification of 3d urban point
clouds: A super-voxel based approach with evalua-
tion. Remote Sensing, 5(4):1624–1650.
Becker, S. and Haala, N. (2007). Combined feature extrac-
tion for fac¸ade reconstruction. In Proceedings of the
ISPRS Workshop Laser Scanning, pages 241–247.
Biasion, A., Bornaz, L., and Rinaudo, F. (2005). Laser scan-
ning applications on disaster management. In Geo-
information for Disaster Management, pages 19–33.
Springer.
Charaniya, A. P., Manduchi, R., and Lodha, S. K. (2004).
Supervised parametric classification of aerial lidar
data. In Conference on Computer Vision and Pattern
Recognition Workshop, 2004, pages 1–8. IEEE.
Fukano, K. and Masuda, H. (2015). Detection and clas-
sification of pole-like objects from mobile mapping
data. ISPRS Annals of Photogrammetry, Remote Sens-
ing and Spatial Information Sciences, 1:57–64.
Grilli, E., Menna, F., and Remondino, F. (2017). A review
of point clouds segmentation and classification algo-
rithms. The International Archives of Photogramme-
try, Remote Sensing and Spatial Information Sciences,
42:339.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and
Stuetzle, W. (1992). Surface reconstruction from un-
organized points. Computer Graphics (SIGGRAPH
’92 Proceedings), 26(2):71–78.
Jaakkola, A., Hyypp
¨
a, J., Hyypp
¨
a, H., and Kukko, A.
(2008). Retrieval algorithms for road surface mod-
elling using laser-based mobile mapping. Sensors,
8:5238–5249.
Lehtom
¨
aki, M., Jaakkola, A., Hyypp
¨
a, J., Kukko, A., and
Kaartinen, H. (2010). Detection of vertical pole-
like objects in a road environment using vehicle-based
laser scanning data. Remote Sensing, 2(3):641–664.
Li, R. (1997). Mobile mapping: An emerging technology
for spatial data acquisition. Photogrammetric Engi-
neering and Remote Sensing, 63(9):1085–1092.
Meinel, G. and Hecht, R. (2005). Reconstruction of ur-
ban vegetation based on laser scanner data at leaf-off
aerial flight times–first results. Proceedings of the 31st
International Symposium on Remote Sensing of Envi-
ronment.
Meng, X., Wang, L., Silv
´
an-C
´
ardenas, J. L., and Currit, N.
(2009). A multi-directional ground filtering algorithm
for airborne lidar. ISPRS Journal of Photogrammetry
and Remote Sensing, 64(1):117–124.
Niemeyer, J., Rottensteiner, F., and Soergel, U. (2012).
Conditional random fields for lidar point cloud classi-
fication in complex urban areas. ISPRS annals of the
photogrammetry, remote sensing and spatial informa-
tion sciences, 1(3):263–268.
N
¨
uchter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wag-
ner, B., and Surmann, H. (2006). 3d mapping with
semantic knowledge. In RoboCup 2005: Robot Soc-
cer World Cup IX, pages 335–346. Springer.
Pu, S., Rutzinger, M., Vosselman, G., and Elberink, S. O.
(2011). Recognizing basic structures from mobile
laser scanning data for road inventory studies. IS-
PRS Journal of Photogrammetry and Remote Sensing,
66(6):28–39.
Rabbani, T., Van Den Heuvel, F., and Vosselmann, G.
(2006). Segmentation of point clouds using smooth-
ness constraint. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sci-
ences, 36(5):248–253.
Richter, R., Behrens, M., and D
¨
ollner, J. (2013). Object
class segmentation of massive 3d point clouds of ur-
ban areas using point cloud topology. International
Journal of Remote Sensing, 34(23):8408–8424.
Richter, R., Discher, S., and D
¨
ollner, J. (2015). Out-of-
core visualization of classified 3d point clouds. In 3D
Geoinformation Science: The Selected Papers of the
3D GeoInfo 2014, pages 227–242. Cham: Springer
International Publishing.
Rutzinger, M., H
¨
ofle, B., Hollaus, M., and Pfeifer, N.
(2008). Object-based point cloud analysis of full-
waveform airborne laser scanning data for urban veg-
etation classification. Sensors, 8:4505–4528.
Rutzinger, M., Pratihast, A. K., Oude Elberink, S. J., and
Vosselman, G. (2011). Tree modelling from mo-
bile laser scanning data-sets. The Photogrammetric
Record, 26(135):361–372.
Schwarz, B. (2010). Lidar: Mapping the world in 3d. Na-
ture Photonics, 4(7):429.
Tang, P., Huber, D., Akinci, B., Lipman, R., and Lytle, A.
(2010). Automatic reconstruction of as-built building
information models from laser-scanned point clouds:
A review of related techniques. Automation in con-
struction, 19(7):829–843.
Teizer, J., Kim, C., Haas, C., Liapi, K., and Caldas, C.
(2005). Framework for real-time three-dimensional
modeling of infrastructure. Transportation Research
Record: Journal of the Transportation Research
Board, 1913:177–186.
Triebel, R., Kersting, K., and Burgard, W. (2006). Robust
3d scan point classification using associative markov
networks. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Confer-
ence on, pages 2603–2608. IEEE.
Vosselman, G., Gorte, B. G., Sithole, G., and Rabbani,
T. (2004). Recognising structure in laser scanner
point clouds. International archives of photogramme-
try, remote sensing and spatial information sciences,
46(8):33–38.
Weinmann, M., Jutzi, B., and Mallet, C. (2013). Feature rel-
evance assessment for the semantic interpretation of
3d point cloud data. ISPRS Annals of the Photogram-
metry, Remote Sensing and Spatial Information Sci-
ences, II-5/W2:313–318.
Yao, W. and Fan, H. (2013). Automated detection of 3d
individual trees along urban road corridors by mo-
bile laser scanning systems. In Proceedings of Inter-
national Symposium on Mobile Mapping Technology
(MMT), Tainan City, Taiwan, volume 13.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
208