REFERENCES
Aldoma, A., Marton, Z.-C., Tombari, F., Wohlkinger, W.,
Potthast, C., Zeisl, B., Rusu, R. B., Gedikli, S., and
Vincze, M. (2012). Tutorial: Point cloud library:
Three-dimensional object recognition and 6 dof pose
estimation. IEEE Robotics & Automation Magazine,
19(3):80–91.
Boiman, O., Shechtman, E., and Irani, M. (2008). In de-
fense of nearest-neighbor based image classification.
In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conf. on, pages 1–8. IEEE.
Cui, S., Schwarz, G., and Datcu, M. (2015). Image clas-
sification: No features, no clustering. In Image Pro-
cessing (ICIP), 2015 IEEE Int. Conf. on, pages 1960–
1964. IEEE.
Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller, M.,
and Burgard, W. (2015). Multimodal deep learning
for robust rgb-d object recognition. In Intelligent Ro-
bots and Systems (IROS), 2015 IEEE/RSJ Int. Conf.
on, pages 681–687. IEEE.
Ganihar, S. A., Joshi, S., Setty, S., and Mudenagudi, U.
(2014). Metric tensor and christoffel symbols based
3d object categorization. In Asian Conf. on Computer
Vision, pages 138–151. Springer.
Garcia-Garcia, A., Gomez-Donoso, F., Garcia-Rodriguez,
J., Orts-Escolano, S., Cazorla, M., and Azorin-Lopez,
J. (2016). Pointnet: A 3d convolutional neural net-
work for real-time object class recognition. In Neural
Networks (IJCNN), 2016 International Joint Conf. on,
pages 1578–1584. IEEE.
Giorgi, D., Biasotti, S., and Paraboschi, L. (2007). Shape re-
trieval contest 2007: Watertight models track. SHREC
competition, 8(7).
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In Computer Vision (ICCV), 2017 IEEE
Int. Conf. on, pages 2980–2988. IEEE.
Khoury, M., Zhou, Q.-Y., and Koltun, V. (2017). Le-
arning compact geometric features. arXiv preprint
arXiv:1709.05056.
Knopp, J., Prasad, M., Willems, G., Timofte, R., and
Van Gool, L. (2010). Hough transform and 3d surf
for robust three dimensional classification. In ECCV
(6), pages 589–602.
Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined
object categorization and segmentation with an impli-
cit shape model. In ECCV’ 04 Workshop on Statistical
Learning in Computer Vision, pages 17–32.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollar, P.
(2017). Focal loss for dense object detection. In 2017
IEEE Int. Conf. on Computer Vision (ICCV), pages
2999–3007. IEEE.
Liu, Q., Puthenputhussery, A., and Liu, C. (2015). Novel
general knn classifier and general nearest mean clas-
sifier for visual classification. In Image Processing
(ICIP), 2015 IEEE Int. Conf. on, pages 1810–1814.
IEEE.
Maji, S. and Malik, J. (2009). Object detection using a max-
margin hough transform. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conf. on,
pages 1038–1045. IEEE.
Maturana, D. and Scherer, S. (2015). Voxnet: A 3d convo-
lutional neural network for real-time object recogni-
tion. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ Int. Conf. on, pages 922–928. IEEE.
McCann, S. and Lowe, D. G. (2012). Local naive bayes
nearest neighbor for image classification. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE
Conf. on, pages 3650–3656. IEEE.
Prakhya, S. M., Liu, B., and Lin, W. (2015). B-shot: A
binary feature descriptor for fast and efficient keypoint
matching on 3d point clouds. In Intelligent Robots and
Systems (IROS), 2015 IEEE/RSJ Int. Conf. on, pages
1929–1934. IEEE.
Qi, C. R., Su, H., Mo, K., and Guibas, L. J. (2017). Point-
net: Deep learning on point sets for 3d classification
and segmentation. Proc. Computer Vision and Pattern
Recognition (CVPR), IEEE, 1(2):4.
Salti, S., Tombari, F., and Di Stefano, L. (2010). On the
use of implicit shape models for recognition of object
categories in 3d data. In ACCV (3), Lecture Notes in
Computer Science, pages 653–666.
Schmidt, T., Newcombe, R., and Fox, D. (2017). Self-
supervised visual descriptor learning for dense corre-
spondence. IEEE Robotics and Automation Letters,
2(2):420–427.
Seib, V., Link, N., and Paulus, D. (2015). Pose estimation
and shape retrieval with hough voting in a continuous
voting space. In German Conf. on Pattern Recogni-
tion, pages 458–469. Springer.
Tombari, F. and Di Stefano, L. (2010). Object recognition in
3d scenes with occlusions and clutter by hough voting.
In Image and Video Technology (PSIVT), 2010 Fourth
Pacific-Rim Symposium on, pages 349–355. IEEE.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Unique
signatures of histograms for local surface description.
In Proc. of the European Conf. on computer vision
(ECCV), ECCV’10, pages 356–369. Springer-Verlag.
Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X.,
and Xiao, J. (2015). 3d shapenets: A deep represen-
tation for volumetric shapes. In Proceedings of the
IEEE conference on computer vision and pattern re-
cognition, pages 1912–1920.
Zia, S., Y
¨
uksel, B., Y
¨
uret, D., and Yemez, Y. (2017). Rgb-
d object recognition using deep convolutional neural
networks. In 2017 IEEE Int. Conf. on Computer Vision
Workshops (ICCVW), pages 887–894. IEEE.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
264