Table 2: Percentage reduction in RMS error of GRANSAM
versus other methods on UWA dataset.
FGR MFR RANSAM
GRANSAM 37.7 3 37.03 7.84
REFERENCES
Besl, P. J. and Jain, R. C. (1986). Invariant surface characte-
ristics for 3d object recognition in range images. Com-
puter Vision, Graphics, and Image Processing, 33:33–
80.
Choi, S., Zhou, Q.-Y., and Koltun, V. (2015). Robust re-
construction of indoor scenes. In CVPR, pages 5556–
5565.
Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model
globally, match locally: Efficient and robust 3d object
recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 998–1005.
Faisal Azhar, S. P. and Adams, G. (2019). Modified
m-estimation for fast global registration of 3d point
clouds. In Electronic Imaging.
Fischler, M. A. and Bolles, R. (1981). Random sample con-
sensus: A paradigm for model fitting with applications
to image analysis and automated cartography. ACM
Commun., 24(6):381–395.
Gelfand, N., Mitra, N. J., G uibas, L. J., and Pottmann, H.
(2005). Robust global registration. In Proceedings
of the Third Eurographics Symposium on Geometry
Processing. Eurographics Association.
Holz, D., Ichim, A. E., Tombari, F., Rusu, R. B., and
Behnke, S. (2015). Registration with the point cloud
library: A modular framework for aligning in 3-d.
IEEE Robotics Automation Magazine, 22(4):110–124.
Mellado, N., Aiger, D., and Mitra, N . J. ( 2014). Super 4pcs
fast global pointcloud registration via smart indexing.
Comput. Graph. Forum, 33:205–215.
Mian, A. S., Bennamoun, M., and Owens, R. (2006). Three-
dimensional model-based object recognition and seg-
mentation in cluttered scenes. IEEE Trans. Pattern
Anal. Mach. Intell., 28:1584–1601.
Rantoson, R., Nouira, H., Anwer, N., and Mehdi-Souzani,
C. (2016). Improved curvature-based registration met-
hods for high-precision dimensional metrology. Pre-
cision Engineering, 46:232 – 242.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast point
feature histograms (fpfh) for 3d registration. In Pro-
ceedings of IEEE International Conference on Robo-
tics and Automation, pages 1848–1853.
Rusu, R . B., Blodow, N., Marton, Z. C., and Beetz, M.
(2008). Aligning point cloud views using persis-
tent feature histograms. In Proceedings of the 21st
IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems.
Tombari, F., Salti, S., and Di Stefano, L. (2010). Uni-
que signatures of histograms for local surface descrip-
tion. In Proceedings of the 11th European Conference
on Computer Vision Conference on Computer Vision:
Part III, ECCV’10, pages 356–369.
Winkelbach, S., Molkenstruck, S., and Wahl, F. M. (2006).
Low-cost laser range scanner and fast surface regis-
tration approach. In Pattern Recognition, pages 718–
728.
Zhou, Q.-Y., Park, J., and Koltun, V. (2016). Fast global
registration. In ECCV, pages 766–782.