Forster, M. (2005). A fast and simple heuristic for con-
strained two-level crossing reduction. In Graph Draw-
ing. GD 2004. Lecture Notes in Computer Science, vol
3383. Springer, Berlin, Heidelberg, pages 206–216.
Gansner, E. R., Koutsofios, E., North, S. C., and Vo,
K. P. (1993). A technique for drawing directed
graphs. IEEE Transactions nn Software Engineering,
19(3):214–230.
Gansner, E. R. and North, S. C. (2000). An open graph
visualization system and its applications to software
engineering. Softw. Pract. Exper., 30(11):1203–1233.
Gibson, H., Faith, J., and Vickers, P. (2013). A survey
of two-dimensional graph layout techniques for infor-
mation visualisation. Information Visualization, 12(3-
4):324–357.
GoogleFFT (2017). Google: Famous family trees.
https://groups.google.com/forum/#forum/famous-
family-trees.
Graphviz (2016). Graphviz - graph visualization software.
www.graphviz.org. Accessed: 5.6.2016.
Healy, P. and Nikolov, N. S. (2003). Characterization of
layered graphs with the minimum number of dummy
vertices. Technical Report UL-CSIS-03-4, CSIS De-
partment, University of Limerick, Limerick, Republic
of Ireland.
Healy, P. and Nikolov, N. S. (2013). Handbook of
Graph Drawing and Visualization, chapter Hierarchi-
cal Drawing Algorithms, pages 409–453. CRC Press.
Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: Efficient
algorithms for graph manipulation. Commun. ACM,
16(6):372–378.
Hopcroft, J. and Tarjan, R. (1974). Efficient planarity test-
ing. Journal of the ACM, 21(4):549–568.
Hsu, W.-L. and McConnell, R. (2004). Handbook of Data
Structures and Applications, chapter PQ Trees, PC
Trees, and Planar Graphs, pages 32–1–32–27. CRC
Press.
ITIS (2017). ITIS - Integrated Taxonomic Information
System. https://www.itis.gov/downloads/index.html.
Retrieved February, 10, 2017, from the Integrated
Taxonomic Information System on-line database,
http://www.itis.gov.
Lempel, A., Even, S., and Cederbaum, I. (1967). An algo-
rithm for planarity testing of graphs. In Rosenstiehl,
P., Gordon, and Breach, editors, Theory of Graphs,
pages 215–232, New York.
Leskovec, J. and Krevl, A. (2017). SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data.
Lutteropp, S. (2014). On layered drawings of planar graphs.
Master’s thesis, Karlruhe Institute of Technology.
Marik, R. (2016). Tree-based genealogical graph layout. In
Hu, Y. and N
¨
ollenburg, M., editors, Graph Drawing
and Network Visualization, 24th International Sym-
posium, GD 2016, Athens, Greece, September 19-21,
volume ISBN: 978-3-319-50105-5 (Print) 978-3-319-
50106-2 (Online).
Marik, R. (2017a). Efficient Genealogical Graph Layout,
pages 567–578. Springer International Publishing,
Cham.
Marik, R. (2017b). On Multitree-Like Graph Layering,
pages 595–606. Springer International Publishing,
Cham.
Marik, R. (2018). Layered graph force-driven vertex
positioning. In Proceedings of the 13th Interna-
tional In Proceedings of the 13th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISIGRAPP
2018) Funchal, Madeira, Portugal, 27-29 January,
IVAPP 2018, volume 3: IVAPP, pages 301–308.
Mathews, E. and Frey, H. (2012). Distributed Comput-
ing and Networking: 13th International Conference,
ICDCN 2012, Hong Kong, China, January 3-6, 2012.
Proceedings, chapter A Localized Link Removal and
Addition Based Planarization Algorithm, pages 337–
350. Springer Berlin Heidelberg, Berlin, Heidelberg.
Nikolov, N. S., Tarassov, A., and Branke, J. (2005).
In search for efficient heuristics for minimum-width
graph layering with consideration of dummy nodes. J.
Exp. Algorithmics, 10.
Paton, K. (1971). An algorithm for the blocks and cutnodes
of a graph. Commun. ACM, 14(7):468–475.
Pruitt, P. D. (2017). Great sites for links to genealogy soft-
ware. http://famousfamilytrees.blogspot.cz/2011/12/.
Accessed: February 2017.
Reingold, E. M. and Tilford, J. S. (1981). Tidier drawings
of trees. IEEE Transactions on Software Engineering,
SE-7(2):223–228.
Resende, M. G. C. and Ribeiro, C. C. (2001). Encyclopedia
of Optimization, chapter Graph planarization, pages
908–913. Springer US, Boston, MA.
Shih, W.-K. and Hsu, W.-L. (1999). A new planarity test.
Theoretical Computer Science, 223(1-2):179–191.
Stobie, T. (2017). Thomas stobie’s genealogy pages.
http://freepages.genealogy.rootsweb.ancestry.com/ sto-
bie/. Accessed: February 2017.
Sugiyama, K. and Misue, K. (1991). Visualization of struc-
tural information: automatic drawing of compound di-
graphs. IEEE Transactions on Systems, Man, and Cy-
bernetics, 21(4):876–892.
Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man, and Cy-
bernetics, 11(2):109–125.
Tutte, W. T. (1963). How to draw a graph. Proceed-
ings of the London Mathematical Society, Third Se-
ries, 3(13):743–768.
Warfield, J. N. (1977). Crossing theory and hierarchy map-
ping. IEEE Transactions on Systems, Man, and Cy-
bernetics, 7(7):505–523.
Wilson, R. J. (1998). Introduction to Graph Theory. Long-
man, fourth edition.
IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications
240