REFERENCES
Ali, M. N., Abdullah-Al-Wadud, M., and Lee, S.-L. (2012).
An efficient algorithm for detection of soccer ball and
players. Proc. 16th ASTL Control and Networking, 16.
D’Orazio, T., Ancona, N., Cicirelli, G., and Nitti, M.
(2002). A ball detection algorithm for real soccer
image sequences. In Pattern Recognition, 2002.
Proceedings. 16th International Conference on, vo-
lume 1, pages 210–213. IEEE.
D’Orazio, T., Guaragnella, C., Leo, M., and Distante, A.
(2004). A new algorithm for ball recognition using
circle hough transform and neural classifier. Pattern
Recognition, 37(3):393 – 408.
D’Orazio, T., Leo, M., Mosca, N., Spagnolo, P., and Maz-
zeo, P. (2009). A semi-automatic system for ground
truth generation of soccer video sequences. In 2009
Advanced Video and Signal Based Surveillance, pa-
ges 559–564. IEEE.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88(2):303–338.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discri-
minatively trained part-based models. IEEE tran-
sactions on pattern analysis and machine intelligence,
32(9):1627–1645.
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE
international conference on computer vision, pages
1440–1448.
Gong, Y., Sin, L. T., Chuan, C. H., Zhang, H., and Sa-
kauchi, M. (1995). Automatic parsing of tv soccer
programs. In Proceedings of the International Confe-
rence on Multimedia Computing and Systems, pages
167–174.
Halbinger, J. and Metzler, J. (2015). Video-based soccer
ball detection in difficult situations. In Cabri, J., Pe-
zarat Correia, P., and Barreiros, J., editors, Sports
Science Research and Technology Support, pages 17–
24, Cham. Springer International Publishing.
Hariharan, B., Arbel
´
aez, P., Girshick, R., and Malik, J.
(2015). Hypercolumns for object segmentation and
fine-grained localization. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 447–456.
Higham, D., Kelley, J., Hudson, C., and Goodwill, S. R.
(2016). Finding the optimal background subtraction
algorithm for eurohockey 2015 video. Procedia Engi-
neering, 147:637 – 642. The Engineering of SPORT
11.
Kia, M. (2016). Ball automatic detection and tracking in
long shot views. International Journal of Computer
Science and Network Security (IJCSNS), 16(6):1.
Kingma, D. P. and Ba, J. (2014). Adam: A method for sto-
chastic optimization. arXiv preprint arXiv:1412.6980.
Leo, M., DOrazio, T., Spagnolo, P., Mazzeo, P. L., and Dis-
tante, A. (2008). Sift based ball recognition in soccer
images. In International Conference on Image and
Signal Processing, pages 263–272. Springer.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. arXiv
preprint arXiv:1708.02002.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot mul-
tibox detector. In European conference on computer
vision, pages 21–37. Springer.
Mazzeo, P. L., Leo, M., Spagnolo, P., and Nitti, M. (2012).
Soccer ball detection by comparing different feature
extraction methodologies. Advances in Artificial In-
telligence, 2012:6.
Pallavi, V., Mukherjee, J., Majumdar, A. K., and Sural, S.
(2008). Ball detection from broadcast soccer videos
using static and dynamic features. Journal of Visual
Communication and Image Representation, 19(7):426
– 436.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
Poppe, C., De Bruyne, S., Verstockt, S., and Van de Walle,
R. (2010). Multi-camera analysis of soccer sequen-
ces. In Advanced Video and Signal Based Surveillance
(AVSS), 2010 Seventh IEEE International Conference
on, pages 26–31. IEEE.
Rao, U. and Pati, U. C. (2015). A novel algorithm for de-
tection of soccer ball and player. In Communications
and Signal Processing (ICCSP), 2015 International
Conference on, pages 0344–0348. IEEE.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Reno, V., Mosca, N., Marani, R., Nitti, M., DOrazio, T., and
Stella, E. (2018). Convolutional neural networks ba-
sed ball detection in tennis games. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 1758–1764.
Speck, D., Barros, P., Weber, C., and Wermter, S. (2017).
Ball localization for robocup soccer using convolutio-
nal neural networks. In Behnke, S., Sheh, R., Sarıel,
S., and Lee, D. D., editors, RoboCup 2016: Robot
World Cup XX, pages 19–30, Cham. Springer Inter-
national Publishing.
Yuen, H., Princen, J., Illingworth, J., and Kittler, J. (1990).
Comparative study of hough transform methods for ci-
rcle finding. Image and vision computing, 8(1):71–77.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
304