Do, T. T., Hoang, T., Pomponiu, V., Zhou, Y., Zhao, C.,
Cheung, N. M., Koh, D., Tan, A., and Hoon, T.
(2018). Accessible melanoma detection using smart-
phones and mobile image analysis. IEEE Transactions
on Multimedia, pages 1–1.
Ganster, H., Pinz, P., Rohrer, R., Wildling, E., Binder,
M., and Kittler, H. (2001). Automated melanoma
recognition. IEEE transactions on medical imaging,
20(3):233–239.
Garnavi, R., Aldeen, M., and Celebi, M. (2011). Weighted
performance index for objective evaluation of border
detection methods in dermoscopy images. Skin Re-
search and Technology, 17(1):35–44.
Hance, G. A., Umbaugh, S. E., Moss, R. H., and Stoecker,
W. V. (1996). Unsupervised color image segmenta-
tion: with application to skin tumor borders. IEEE
Engineering in Medicine and Biology Magazine,
15(1):104–111.
Haralick, R. M. and Shapiro, L. G. (1992). Computer and
robot vision. Addison-wesley.
Iyatomi, H., Oka, H., Celebi, M. E., Hashimoto, M., Hagi-
wara, M., Tanaka, M., and Ogawa, K. (2008). An
improved internet-based melanoma screening system
with dermatologist-like tumor area extraction algo-
rithm. Computerized Medical Imaging and Graphics,
32(7):566–579.
K´echichian, R., Gong, H., Revenu, M., Lezoray, O., and
Desvignes, M. (2014). New data model for graph-
cut segmentation: Application to automatic melanoma
delineation. In 2014 IEEE International Conference
on Image Processing (ICIP), pages 892–896.
Ker, J., Wang, L., Rao, J., and Lim, T. (2018). Deep learning
applications in medical image analysis. IEEE Access,
6:9375–9389.
Korotkov, K. and Garcia, R. (2012). Computerized anal-
ysis of pigmented skin lesions: A review. Artificial
intelligence in medicine, 56(2):69–90.
Lankton, S. and Tannenbaum, A. (2008). Localizing region-
based active contours. IEEE transactions on image
processing, 17(11):2029–2039.
Li, B. N., Chui, C. K., Chang, S., and Ong, S. H. (2011). In-
tegrating spatial fuzzy clustering with level set meth-
ods for automated medical image segmentation. Com-
puters in biology and medicine, 41(1):1–10.
Lloyd, S. (1982). Least squares quantization in pcm. IEEE
transactions on information theory, 28(2):129–137.
Maglogiannis, I. and Doukas, C. N. (2009). Overview of ad-
vanced computer vision systems for skin lesions char-
acterization. IEEE transactions on information tech-
nology in biomedicine, 13(5):721–733.
Melli, R., Grana, C., and Cucchiara, R. (2006). Comparison
of color clustering algorithms for segmentation of der-
matological images. In Medical Imaging 2006: Image
Processing, volume 6144, page 61443S. International
Society for Optics and Photonics.
Mendonc¸a, T., Ferreira, P. M., Marques, J. S., Mar-
cal, A. R., and Rozeira, J. (2013). Ph2-a der-
moscopic image database for research and bench-
marking. In Engineering in Medicine and Biol-
ogy Society (EMBC), 2013 35th Annual International
Conference of the IEEE, pages 5437–5440. IEEE.
http://www.fc.up.pt/addi/ph2%20database.html.
Oliveira, R. B., Papa, J. P., Pereira, A. S., and Tavares,
J. M. R. (2018). Computational methods for pig-
mented skin lesion classification in images: review
and future trends. Neural Computing and Applica-
tions, 29(3):613–636.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE transactions on systems, man,
and cybernetics, 9(1):62–66.
Pathan, S., Prabhu, K. G., and Siddalingaswamy, P. (2018).
Techniques and algorithms for computer aided diag-
nosis of pigmented skin lesions – a review. Biomedi-
cal Signal Processing and Control, 39:237–262.
Rajab, M., Woolfson, M., and Morgan, S. (2004). Applica-
tion of region-based segmentation and neural network
edge detection to skin lesions. Computerized Medical
Imaging and Graphics, 28(1):61–68.
Sahoo, P. K., Soltani, S., and Wong, A. K. (1988). A survey
of thresholding techniques. Computer vision, graph-
ics, and image processing, 41(2):233–260.
Sarkar, S., Paul, S., Burman, R., Das, S., and Chaudhuri,
S. S. (2014). A fuzzy entropy based multi-level im-
age thresholding using differential evolution. In In-
ternational Conference on Swarm, Evolutionary, and
Memetic Computing, pages 386–395. Springer.
Soille, P. (2013). Morphological image analysis: princi-
ples and applications. Springer Science & Business
Media.
Tasoulis, S., Doukas, C., Maglogiannis, I., and Plagianakos,
V. (2010). Classification of dermatological images us-
ing advanced clustering techniques. In Engineering in
Medicine and Biology Society (EMBC), 2010 Annual
International Conference of the IEEE, pages 6721–
6724. IEEE.
Umbaugh, S. E., Moss, R. H., Stoecker, W. V., and
Hance, G. A. (1993). Automatic color segmenta-
tion algorithms-with application to skin tumor feature
identification. IEEE Engineering in Medicine and Bi-
ology Magazine, 12(3):75–82.
Zhou, H., Chen, M., Zou, L., Gass, R., Ferris, L., Dro-
gowski, L., and Rehg, J. M. (2008). Spatially con-
strained segmentation of dermoscopy images. In
Biomedical Imaging: From Nano to Macro, 2008.
ISBI 2008. 5th IEEE International Symposium on,
pages 800–803. IEEE.