Broman, D., Brooks, C., Greenberg, L., Lee, E. A., Masin,
M., Tripakis, S., and Wetter, M. (2013). Determinate
composition of fmus for co-simulation. In Proceed-
ings of the Eleventh ACM International Conference on
Embedded Software, page 2. IEEE Press.
Buss, S. R. (2004). Introduction to inverse kinematics with
jacobian transpose, pseudoinverse and damped least
squares methods. IEEE Journal of Robotics and Au-
tomation, 17(1-19):16.
Cerekovic, A., Pejsa, T., and Pandzic, I. S. (2009). Re-
alactor: character animation and multimodal behavior
realization system. In International Workshop on In-
telligent Virtual Agents, pages 486–487. Springer.
Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P.,
Habib, A., John, C. T., Guendelman, E., and The-
len, D. G. (2007). Opensim: open-source software
to create and analyze dynamic simulations of move-
ment. IEEE transactions on biomedical engineering,
54(11):1940–1950.
Faloutsos, P., Van de Panne, M., and Terzopoulos, D.
(2001). Composable controllers for physics-based
character animation. In Proceedings of the 28th an-
nual conference on Computer graphics and interac-
tive techniques, pages 251–260. ACM.
Feng, A., Huang, Y., Kallmann, M., and Shapiro, A.
(2012a). An analysis of motion blending techniques.
In International Conference on Motion in Games,
pages 232–243. Springer.
Feng, A. W., Xu, Y., and Shapiro, A. (2012b). An example-
based motion synthesis technique for locomotion and
object manipulation. In Proceedings of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and
Games, pages 95–102. ACM.
Gaisbauer, F., Agethen, P., B
¨
ar, T., and Rukzio, E. (2018a).
Introducing a Modular Concept for Exchanging Char-
acter Animation Approaches. In Jain, E. and Kosinka,
J., editors, EG 2018 - Posters. The Eurographics As-
sociation.
Gaisbauer, F., Agethen, P., Otto, M., B
¨
ar, T., Sues, J., and
Rukzio, E. (2018b). Presenting a modular framework
for a holistic simulation of manual assembly tasks.
Procedia CIRP, 72:768–773.
Gaisbauer, F., Froehlich, P., Lehwald, J., Agethen, P., and
Rukzio, E. (2018c). Presenting a Deep Motion Blend-
ing Approach for Simulating Natural Reach Motions.
In Jain, E. and Kosinka, J., editors, EG 2018 - Posters.
The Eurographics Association.
Hanson, L., H
¨
ogberg, D., Carlson, J. S., Bohlin, R., Brolin,
E., Delfs, N., M
˚
ardberg, P., Stefan, G., Keyvani, A.,
and Rhen, I.-M. (2014). Imma–intelligently moving
manikins in automotive applications. In Third Inter-
national Summit on Human Simulation (ISHS2014).
Holden, D., Komura, T., and Saito, J. (2017). Phase-
functioned neural networks for character control.
ACM Transactions on Graphics (TOG), 36(4):42.
Homaifar, A., Qi, C. X., and Lai, S. H. (1994). Con-
strained optimization via genetic algorithms. Simu-
lation, 62(4):242–253.
ITEA (2011). ITEA Project 07006 MODELISAR - website
www.itea3.org/project/modelisar.html.
ITEA (2018). ITEA Project 17028 MOSIM - website
www.itea3.org/project/mosim.html.
Kallmann, M. and Marsella, S. (2005). Hierarchical mo-
tion controllers for real-time autonomous virtual hu-
mans. In International Workshop on Intelligent Vir-
tual Agents, pages 253–265. Springer.
Kovar, L., Gleicher, M., and Pighin, F. (2008). Motion
graphs. In ACM SIGGRAPH 2008 classes, page 51.
ACM.
Li, Z., Zhou, Y., Xiao, S., He, C., and Li, H. (2017). Auto-
Conditioned LSTM Network for Extended Com-
plex Human Motion Synthesis. arXiv preprint
arXiv:1707.05363.
Min, J. and Chai, J. (2012). Motion graphs++: a com-
pact generative model for semantic motion analysis
and synthesis. ACM Transactions on Graphics (TOG),
31(6):153.
Powell, M. J. (1978). A fast algorithm for nonlinearly con-
strained optimization calculations. In Numerical anal-
ysis, pages 144–157. Springer.
Ren, L., Patrick, A., Efros, A. A., Hodgins, J. K., and
Rehg, J. M. (2005). A data-driven approach to quanti-
fying natural human motion. In ACM Transactions
on Graphics (TOG), volume 24, pages 1090–1097.
ACM.
Shapiro, A. (2011). Building a character animation system.
In International Conference on Motion in Games,
pages 98–109. Springer.
Shoulson, A., Marshak, N., Kapadia, M., and Badler, N. I.
(2014). Adapt: the agent developmentand prototyp-
ing testbed. IEEE Transactions on Visualization and
Computer Graphics, 20(7):1035–1047.
Thiebaux, M., Marsella, S., Marshall, A. N., and Kall-
mann, M. (2008). Smartbody: Behavior realiza-
tion for embodied conversational agents. In Pro-
ceedings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume
1, pages 151–158. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Tsai, Y.-Y., Lin, W.-C., Cheng, K. B., Lee, J., and Lee, T.-Y.
(2010). Real-time physics-based 3d biped character
animation using an inverted pendulum model. IEEE
transactions on visualization and computer graphics,
16(2):325–337.
Van Acker, B., Denil, J., Vangheluwe, H., and De Meule-
naere, P. (2015). Generation of an optimised master
algorithm for fmi co-simulation. In Proceedings of
the Symposium on Theory of Modeling & Simulation:
DEVS Integrative M&S Symposium, pages 205–212.
Society for Computer Simulation International.
Wang, B. and Baras, J. S. (2013). Hybridsim: A modeling
and co-simulation toolchain for cyber-physical sys-
tems. In Proceedings of the 2013 IEEE/ACM 17th In-
ternational Symposium on Distributed Simulation and
Real Time Applications, pages 33–40. IEEE Computer
Society.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
76