REFERENCES
Ashburner, J. and Friston, K. J. (2005). Unified segmenta-
tion. NeuroImage, 26(3):839 – 851.
Boykov, Y. and Kolmogorov, V. (2004). An experimen-
tal comparison of min-cut/max-flow algorithms for
energy minimization in vision. IEEE Trans. Pattern
Anal. Mach. Intell., 26(9):1124–1137.
Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast ap-
proximate energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 23(11):1222–1239.
Cabezas, M., Oliver, A., Llad, X., Freixenet, J., and Cua-
dra, M. B. (2011). A review of atlas-based segmenta-
tion for magnetic resonance brain images. Computer
Methods and Programs in Biomedicine, 104(3):e158
– e177.
C¸ ic¸ek,
¨
O., Abdulkadir, A., Lienkamp, S. S., Brox, T., and
Ronneberger, O. (2016). 3d u-net: Learning dense
volumetric segmentation from sparse annotation. In
Ourselin, S., Joskowicz, L., Sabuncu, M. R., Unal,
G., and Wells, W., editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2016,
pages 424–432, Cham. Springer International Publis-
hing.
Dangi, S., Cahill, N., and Linte, C. A. (2017). Integrating at-
las and graph cut methods for left ventricle segmenta-
tion from cardiac cine mri. In Mansi, T., McLeod, K.,
Pop, M., Rhode, K., Sermesant, M., and Young, A.,
editors, Statistical Atlases and Computational Models
of the Heart. Imaging and Modelling Challenges, pa-
ges 76–86, Cham. Springer International Publishing.
Galisot, G., Brouard, T., Ramel, J., and Chaillou, E. (2017).
Image segmentation using local probabilistic atlases
coupled with topological information. In Proceedings
of the 12th International Joint Conference on Compu-
ter Vision, Imaging and Computer Graphics Theory
and Applications (VISIGRAPP 2017) - Volume 4: VI-
SAPP, Porto, Portugal, February 27 - March 1, 2017.,
pages 501–508.
Iglesias, J. E. and Karssemeijer, N. (2009). Robust initial
detection of landmarks in film-screen mammograms
using multiple ffdm atlases. IEEE Transactions on
Medical Imaging, 28(11):1815–1824.
Iglesias, J. E. and Sabuncu, M. R. (2015). Multi-atlas seg-
mentation of biomedical images: A survey. Medical
Image Analysis, 24(1):205 – 219.
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever,
M. A., and van Ginneken, B. (2009). Multi-atlas-
based segmentation with local decision fusionappli-
cation to cardiac and aortic segmentation in ct scans.
IEEE Transactions on Medical Imaging, 28(7):1000–
1010.
Klein, A., Mensh, B., Ghosh, S., Tourville, J., and Hirsch, J.
(2005). Mindboggle: Automated brain labeling with
multiple atlases. BMC Medical Imaging, 5(1):7.
Landman, B. A., Warfield, S. K., Hammers, A., Akhondi-
asl, A., Asman, A. J., Ribbens, A., Lucas, B., Avants,
B. B., Ledig, C., Ma, D., Rueckert, D., Vandermeu-
len, D., Maes, F., Holmes, H., Wang, H., Wang, J.,
Doshi, J., Kornegay, J., Hajnal, J. V., Gray, K., Collins,
L., Cardoso, M. J., Lythgoe, M., Styner, M., Armand,
M., Miller, M., Aljabar, P., Suetens, P., Yushkevich,
P. A., Coupe, P., Wolz, R., and Heckemann, R. A.
(2012). MICCAI 2012 Workshop on Multi-Atlas La-
beling. Technical report.
Nitzsche, B., Frey, S., Collins, L. D., Seeger, J., Lobsien,
D., Dreyer, A., Kirsten, H., Stoffel, M. H., Fonov,
V. S., and Boltze, J. (2015). A stereotaxic, population-
averaged t1w ovine brain atlas including cerebral mor-
phology and tissue volumes. Frontiers in Neuroana-
tomy, 9:69.
Platero, C., Tobar, M. C., Sanguino, J., and Velasco, O.
(2014). A new label fusion method using graph
cuts: Application to hippocampus segmentation. In
Roa Romero, L. M., editor, XIII Mediterranean Con-
ference on Medical and Biological Engineering and
Computing 2013, pages 174–177, Cham. Springer In-
ternational Publishing.
Rohlfing, T., Brandt, R., Menzel, R., and Maurer, C. R.
(2004). Evaluation of atlas selection strategies for
atlas-based image segmentation with application to
confocal microscopy images of bee brains. NeuroI-
mage, 21(4):1428 – 1442.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In Navab, N., Hornegger, J., Wells, W. M.,
and Frangi, A. F., editors, Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015,
pages 234–241, Cham. Springer International Publis-
hing.
Scherrer, B., Forbes, F., Garbay, C., and Dojat, M. (2009).
Distributed local mrf models for tissue and structure
brain segmentation. IEEE Transactions on Medical
Imaging, 28(8):1278–1295.
Shattuck, D. W., Mirza, M., Adisetiyo, V., Hojatkashani,
C., Salamon, G., Narr, K. L., Poldrack, R. A., Bilder,
R. M., and Toga, A. W. (2008). Construction of a 3d
probabilistic atlas of human cortical structures. Neu-
roImage, 39(3):1064 – 1080.
Wang, H., Suh, J. W., Das, S. R., Pluta, J. B., Craige, C., and
Yushkevich, P. A. (2013). Multi-atlas segmentation
with joint label fusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 35(3):611–623.
Xabier Artaechevarria, Arrate Muoz-Barrutia, C. O.-d.-S.
(2008). Efficient classifier generation and weigh-
ted voting for atlas-based segmentation: two small
steps faster and closer to the combination oracle.
Proc.SPIE, 6914:6914 – 6914 – 9.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
350