REFERENCES
Bahnsen, C. H. and Moeslund, T. B. (2018). Rain removal
in traffic surveillance: Does it matter? IEEE Trans on
Intelligent Transportation Systems, pages 1–18.
Chen, D.-Y., Chen, C.-C., and Kang, L.-W. (2014). Visual
depth guided color image rain streaks removal using
sparse coding. IEEE Trans on Circuits and Systems
for Video Technology, 24(8):1430–1455.
Chen, Y.-L. and Hsu, C.-T. (2013). A generalized low-
rank appearance model for spatio-temporally corre-
lated rain streaks. In IEEE Int Conf on Computer Vi-
sion, Proc of the, pages 1968–1975.
Fadili, M. J., Starck, J.-L., Bobin, J., and Moudden, Y.
(2010). Image decomposition and separation using
sparse representations: an overview. Proc of the IEEE,
98(6):983–994.
Fu, X., Huang, J., Ding, X., Liao, Y., and Paisley, J. (2017a).
Clearing the skies: A deep network architecture for
single-image rain removal. Image Processing, IEEE
Trans on, 26(6):2944–2956.
Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., and Pais-
ley, J. (2017b). Removing rain from single images via
a deep detail network. In Computer Vision and Pattern
Recognition, IEEE Conf on.
Fu, Y.-H., Kang, L.-W., Lin, C.-W., and Hsu, C.-T. (2011).
Single-frame-based rain removal via image decompo-
sition. In Acoustics, Speech and Signal Processing,
IEEE International Conf on, pages 1453–1456. IEEE.
Garg, K. and Nayar, S. K. (2006). Photorealistic render-
ing of rain streaks. In Graphics, ACM Trans on, vol-
ume 25, pages 996–1002. ACM.
Hase, H., Miyake, K., and Yoneda, M. (1999). Real-time
snowfall noise elimination. In Image Processing, In-
ternational Conf on, volume 2, pages 406–409. IEEE.
Hoffman, J., Tzeng, E., Park, T., Zhu, J.-Y., Isola, P.,
Saenko, K., Efros, A. A., and Darrell, T. (2017). Cy-
cada: Cycle-consistent adversarial domain adaptation.
arXiv preprint arXiv:1711.03213.
Huang, D.-A., Kang, L.-W., Wang, Y.-C. F., and Lin, C.-
W. (2014). Self-learning based image decomposition
with applications to single image denoising. Multime-
dia, IEEE Trans on, 16(1):83–93.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017).
Image-to-image translation with conditional adversar-
ial networks. arXiv preprint.
Jiang, T.-X., Huang, T.-Z., Zhao, X.-L., Deng, L.-J., and
Wang, Y. (2017). A novel tensor-based video rain
streaks removal approach via utilizing discrimina-
tively intrinsic priors. In Computer Vision and Pattern
Recognition, IEEE Conf on.
Johnson, J., Alahi, A., and Fei-Fei, L. (2016). Perceptual
losses for real-time style transfer and super-resolution.
In European Conf on Computer Vision, pages 694–
711. Springer.
Kang, L.-W., Lin, C.-W., and Fu, Y.-H. (2012). Auto-
matic single-image-based rain streaks removal via im-
age decomposition. Image Processing, IEEE Trans
on, 21(4):1742–1755.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Eu-
ropean Conf on Computer Vision, pages 740–755.
Springer.
Liu, Y.-F., Jaw, D.-W., Huang, S.-C., and Hwang, J.-N.
(2017). Desnownet: Context-aware deep network for
snow removal. arXiv preprint arXiv:1708.04512.
Luo, Y., Xu, Y., and Ji, H. (2015). Removing rain from
a single image via discriminative sparse coding. In
Computer Vision and Pattern Recognition, IEEE Conf
on, pages 3397–3405.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. arXiv preprint.
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and
Lopez, A. M. (2016). The synthia dataset: A large
collection of synthetic images for semantic segmenta-
tion of urban scenes. In Proceedings of the IEEE Conf
on Computer Vision and Pattern Recognition, pages
3234–3243.
Shettle, E. P. (1990). Models of aerosols, clouds, and pre-
cipitation for atmospheric propagation studies. In In
AGARD, Atmospheric Propagation in the UV, Visible,
IR, and MM-Wave Region and Related Systems As-
pects 14 p (SEE N90-21907 15-32).
Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang,
W., and Webb, R. (2017). Learning from simulated
and unsupervised images through adversarial training.
In CVPR, volume 2, page 5.
Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
(2017). Inception-v4, inception-resnet and the impact
of residual connections on learning. In AAAI, pages
4278–4284.
Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Tao, A., Kautz, J., and
Catanzaro, B. (2017a). High-resolution image synthe-
sis and semantic manipulation with conditional gans.
arXiv preprint arXiv:1711.11585.
Wang, Y., Liu, S., Chen, C., and Zeng, B. (2017b). A hier-
archical approach for rain or snow removing in a sin-
gle color image. Image Processing, IEEE Trans on,
26(8):3936–3950.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibil-
ity to structural similarity. Image Processing, IEEE
transa on, 13(4):600–612.
Yang, W., Tan, R. T., Feng, J., Liu, J., Guo, Z., and Yan, S.
(2017). Deep joint rain detection and removal from a
single image. In Computer Vision and Pattern Recog-
nition, IEEE Conf on.
Zhang, H., Sindagi, V., and Patel, V. M. (2017a). Image
de-raining using a conditional generative adversarial
network. Computer Vision and Pattern Recognition,
IEEE Conf on.
Zhang, Y., David, P., and Gong, B. (2017b). Curriculum
domain adaptation for semantic segmentation of urban
scenes. In The IEEE Int Conf on Computer Vision
(ICCV), volume 2, page 6.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
130