brary. R package version 2.0.3.
Berikov, V. (2016). Cluster ensemble with averaged co-
association matrix maximizing the expected margin.
In DOOR (Supplement), pages 489–500.
Chang, W., Cheng, J., Allaire, J., Xie, Y., and McPherson,
J. (2018). shiny: Web Application Framework for R.
R package version 1.1.0.
Cheng, J., Karambelkar, B., and Xie, Y. (2018). leaflet:
Create Interactive Web Maps with the JavaScript
’Leaflet’ Library. R package version 2.0.1.
Cunha Jr, A., Nasser, R., Sampaio, R., Lopes, H., and
Breitman, K. (2014). Uncertainty quantification
through the monte carlo method in a cloud com-
puting setting. Computer Physics Communications,
185(5):1355–1363.
Dietterich, T. G. (2000). Ensemble methods in machine
learning. In International workshop on multiple clas-
sifier systems, pages 1–15. Springer.
Fiol-Gonzalez, S., Almeida, C., Barbosa, S., and Lopes, H.
(2018). A novel committee–based clustering method.
In International Conference on Big Data Analytics
and Knowledge Discovery, pages 126–136. Springer.
Fred, A. L. and Jain, A. K. (2005). Combining multiple
clusterings using evidence accumulation. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence,
(6):835–850.
Ghanem, R., Higdon, D., and Owhadi, H. (2017). Hand-
book of uncertainty quantification. Springer.
Hao, L., Healey, C. G., and Hutchinson, S. E. (2015). En-
semble visualization for cyber situation awareness of
network security data. In 2015 IEEE Symposium on
Visualization for Cyber Security (VizSec), pages 1–8.
IEEE.
Hintze, J. L. and Nelson, R. D. (1998). Violin plots: a box
plot-density trace synergism. The American Statisti-
cian, 52(2):181–184.
Holten, D. (2006). Hierarchical edge bundles: Visualiza-
tion of adjacency relations in hierarchical data. IEEE
Transactions on visualization and computer graphics,
12(5):741–748.
Huang, D., Lai, J.-H., and Wang, C.-D. (2015). Combining
multiple clusterings via crowd agreement estimation
and multi-granularity link analysis. Neurocomputing,
170:240–250.
Huang, D., Wang, C.-D., and Lai, J.-H. (2018). Locally
weighted ensemble clustering. IEEE transactions on
cybernetics, 48(5):1460–1473.
Iam-On, N., Boongoen, T., and Garrett, S. (2008). Refining
pairwise similarity matrix for cluster ensemble prob-
lem with cluster relations. In International Confer-
ence on Discovery Science, pages 222–233. Springer.
Kruskal, J. B. and Wish, M. (1978). Multidimensional Scal-
ing, volume 31.
Lin, Z., Yang, F., Lai, Y., Gao, X., and Wang, T. (2017).
A scalable approach of co-association cluster ensem-
ble using representative points. In Automation (YAC),
2017 32nd Youth Academic Annual Conference of
Chinese Association of, pages 1194–1199. IEEE.
Obermaier, H., Joy, K. I., et al. (2014). Future challenges
for ensemble visualization. IEEE Computer Graphics
and Applications, 34(3):8–11.
Potter, K., Wilson, A., Bremer, P.-T., Williams, D., Dou-
triaux, C., Pascucci, V., and Johnson, C. R. (2009).
Ensemble-vis: A framework for the statistical visual-
ization of ensemble data. In Data Mining Workshops,
2009. ICDMW’09. IEEE International Conference on,
pages 233–240. IEEE.
R Core Team (2018). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria.
Scherr, M. (2008). Multiple and coordinated views in in-
formation visualization. Trends in Information Visu-
alization, 38:1–8.
Sievert, C. (2018). plotly for R.
Tao, Z., Liu, H., Li, S., and Fu, Y. (2016). Robust spec-
tral ensemble clustering. In Proceedings of the 25th
ACM International on Conference on Information and
Knowledge Management, pages 367–376. ACM.
Tarr, G., Bostock, M., and Patrick, E. (2016). edgebundleR:
Circle Plot with Bundled Edges. R package version
0.1.5.
Thurau, M., Buck, C., and Luther, W. (2014). Ipfviewer a
visual analysis system for hierarchical ensemble data.
In Information Visualization Theory and Applications
(IVAPP), 2014 International Conference on, pages
259–266. IEEE.
Van Rossum, G. and Drake, F. L. (2003). Python language
reference manual. Network Theory United Kingdom.
Vega-Pons, S. and Ruiz-Shulcloper, J. (2011). A survey of
clustering ensemble algorithms. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
25(03):337–372.
Wang, J., Hazarika, S., Li, C., and Shen, H.-W. (2018). Vi-
sualization and visual analysis of ensemble data: A
survey. IEEE transactions on visualization and com-
puter graphics.
Wang, X., Yang, C., and Zhou, J. (2009). Clustering aggre-
gation by probability accumulation. Pattern Recogni-
tion, 42(5):668–675.
Wilkinson, L. and Friendly, M. (2009). The history of
the cluster heat map. The American Statistician,
63(2):179–184.
Xu, D. and Tian, Y. (2015). A comprehensive survey
of clustering algorithms. Annals of Data Science,
2(2):165–193.
Yi, J., Yang, T., Jin, R., Jain, A. K., and Mahdavi, M.
(2012). Robust ensemble clustering by matrix com-
pletion. In 2012 IEEE 12th International Conference
on Data Mining, pages 1176–1181. IEEE.
IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications
266