ples in a cluster, maximum distance between two data
points). However, as the χ
2
-test would work with ev-
ery type of categorized quantities of ADL, it could be
used in approaches in which the clusters were defined
differently (i.e. arbitrarily) or data from other sensors
is used.
In future work, we aim at further improving the
presented approach. Therefore, we will further eval-
uate whether a dynamic method that uses an updated
reference month may be effective. Additionally, we
will evaluate this approach with other sensors, such
as motion detectors or smart meters.
ETHICAL CONSIDERATIONS
The field study presented in this article was ethically
evaluated and accepted by the Commission for Re-
search Impact Assessment and Ethics of the Univer-
sity Oldenburg (Drs.74/2016, Head: Prof. Dr. Chris-
tiane Thiel).
ACKNOWLEDGEMENTS
This work is funded by the Central Federal Asso-
ciation of the Health Insurance Funds of Germany
(GKV- Spitzenverband) in the context of the Quo-
Vadis research project.
REFERENCES
Campello, R. J., Moulavi, D., and Sander, J. (2013).
Density-based clustering based on hierarchical den-
sity estimates. In Pacific-Asia conference on knowl-
edge discovery and data mining, pages 160–172.
Springer.
Chen, C., Das, B., and Cook, D. J. (2010). A data mining
framework for activity recognition in smart environ-
ments. In Intelligent Environments (IE), 2010 Sixth
International Conference on, pages 80–83. IEEE.
Chen, L., Hoey, J., Nugent, C. D., Cook, D. J., and Yu,
Z. (2012). Sensor-based activity recognition. IEEE
Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), 42(6):790–808.
Cooke, K. Z., Fisher, A. G., Mayberry, W., and Oakley, F.
(2000). Differences in activities of daily living pro-
cess skills of persons with and without alzheimer’s
disease. The Occupational Therapy Journal of Re-
search, 20(2):87–105.
Deuschl, G., Maier, W., et al. (2009). S3-leitlinie demenzen.
Deutsche Gesellschaft f
¨
ur Psychiatrie, Psychother-
apie und Nervenheilkunde (DGPPN) & Deutsche
Gesellschaft f
¨
ur Neurologie (DGN), pages 1–94.
EU (2018). European union - general data protection reg-
ulation. https://www.eugdpr.org, Accessed 2018-04-
09.
Fleury, A., Vacher, M., and Noury, N. (2010). Svm-based
multimodal classification of activities of daily living
in health smart homes: sensors, algorithms, and first
experimental results. IEEE transactions on informa-
tion technology in biomedicine, 14(2):274–283.
Gerka, A., Lins, C., L
¨
upkes, C., and Hein, A. (2017). Zu-
standserkennung von Beatmungsger
¨
aten durch Mes-
sung des Stromverbrauchs. 16. Deutscher Kongress
f
¨
ur Versorgungsforschung.
Handl, A. (2018). Unabh
¨
angigkeit und Homogenit
¨
at.
www.wiwi.uni-bielefeld.de/lehrbereiche/-emeriti/jfro
hn/Upload/unabh.pdf, Accessed 2018-09-24.
Iatridis, K. and Schroeder, D. (2016). Responsible research
and innovation in industry. Springer.
Lawton, M. P. and Brody, E. M. (1969). Assessment
of older people: self-maintaining and instrumen-
tal activities of daily living. The gerontologist,
9(3 Part 1):179–186.
Lotfi, A., Langensiepen, C., Mahmoud, S. M., and
Akhlaghinia, M. J. (2012). Smart homes for the el-
derly dementia sufferers: identification and prediction
of abnormal behaviour. Journal of ambient intelli-
gence and humanized computing, 3(3):205–218.
Rinne, H. (2008). Taschenbuch der Statistik, volume 4.
Harri Deutsch.
Steen, E.-E., Frenken, T., Eichelberg, M., Frenken, M., and
Hein, A. (2013). Modeling individual healthy behav-
ior using home automation sensor data: Results from a
field trial. Journal of Ambient Intelligence and Smart
Environments, 5(5):503–523.
Suzuki, R., Otake, S., Izutsu, T., Yoshida, M., and Iwaya,
T. (2006). Monitoring daily living activities of elderly
people in a nursing home using an infrared motion-
detection system. Telemedicine Journal & e-Health,
12(2):146–155.
Weiß, C. and Braeseke, G. (2013). Unterst
¨
utzung
Pflegebed
¨
urftiger durch technische Assistenzsysteme.
Accessed 2018-03-15.
Willis, S. L., Allen-Burge, R., Dolan, M. M., Bertrand,
R. M., Yesavage, J., and Taylor, J. L. (1998). Everyday
problem solving among individuals with alzheimer’s
disease. The Gerontologist, 38(5):569–577.
Z
¨
urich-University (2018). Methodenberatung - Pearson
Chi2 Test. https://www.methodenberatung.uzh.ch/de/
datenanalyse spss/unterschiede/proportionen/ pearso-
nuntersch.html, Accessed 2018-10-16.
A Clustering-based Approach to Determine a Standardized Statistic for Daily Activities of Elderly Living Alone
271