REFERENCES
Chang, C.- C. and Lin, C. - J. (2011). Libsvm: a library for
support vector machines. In ACM transactions on in-
telligent systems and t echnology (TIST). ACM.
Cootes, T. F., Taylor, C. J., Cooper, D. H., and Graham, J.
(1995). Active shape models-their training and appli-
cation. In Computer vision and image understanding.
Elsevier.
Goshtasby, A. (1988). Image registration by local approx-
imation methods. In Image and Vision Computing.
Elsevier.
He, J., Hu, J.-F., Lu, X., and Zheng, W.-S. (2017). Multi-
task mid-level feature learning for micro-expression
recognition. I n Pattern Recognition. Elsevier.
Hong, X., Xu, Y., and Zhao, G. (2016). Lbp-top: a tensor
unfolding revisit. In Asian Conference on Computer
Vision. Springer.
Le Ngo, A. C., Phan, R. C.-W., and See, J. (2014). Sponta-
neous subtle expression recognition: Imbalanced da-
tabases and solutions. In Asian conference on compu-
ter vision. Springer.
Lei, Z., Ahonen, T., Pietik¨ainen, M., and Li, S. Z. (2011).
Local frequency descriptor for low-resolution face re-
cognition. In Automatic Face & Gesture Recognition
and Workshops (FG 2011), 2011 IEEE International
Conference on. IEEE.
Li, X., Pfister, T., Huang, X., Zhao, G., and Pietik¨ainen, M.
(2013). A spontaneous micro-expression database: In-
ducement, collection and baseline. In Automatic face
and gesture recognition (fg), 2013 10th ieee internati-
onal conference and workshops on. IEEE.
Li, X., Xiaopeng, H., Moilanen, A., Huang, X., Pfister, T.,
Zhao, G., and Pietik¨ainen, M. (2017). Towards rea-
ding hidden emotions: A comparative study of sponta-
neous mi cro-expression spotting and recognition met-
hods. In IEEE Transactions on Affective Computing.
IEEE.
Liong, S.-T., See, J., Phan, R. C.- W., Le Ngo, A. C., Oh,
Y.-H., and Wong, K. (2014). Subtle expression recog-
nition using optical strain weighted features. In Asian
conference on computer vision. Springer.
Liu, Y.-J., Zhang, J.-K., Yan, W.-J., Wang, S.-J., Zhao, G.,
and Fu, X. (2016). A main directional mean optical
flow feature for spontaneous micro-expression recog-
nition. In IEEE Transactions on Affective Computing.
IEEE.
Lu, Z., Luo, Z., Zheng, H., Chen, J., and Li, W. (2014).
A delaunay-based temporal coding model for micro-
expression recognition. In Asian conference on com-
puter vision. Springer.
Oh, Y.-H., Le Ngo, A. C., See, J., Liong, S.-T., Phan, R.
C.-W., and Ling, H.-C. (2015). Monogenic riesz wa-
velet representation for micro-expression recognition.
In Digital Signal Processing (DSP), 2015 IEEE Inter-
national Conference on. IEEE.
Patel, D., Hong, X., and Zhao, G. (2016). Selective deep
features for micro-expression recognition. In Pattern
Recognition (ICPR), 2016 23rd International Confe-
rence on. IEEE.
Pfister, T., Li, X., Zhao, G., and Pietik¨ainen, M. (2011). Re-
cognising spontaneous facial micro-expressions. In
Computer Vision (ICCV ) , 2011 IEEE International
Conference on. IE EE.
Ruiz-Hernandez, J. A. and P ietik¨ainen, M. (2013). Enco-
ding local binary patterns using the re-parametrization
of the second order gaussian jet. In Automatic Face
and Gesture Recognition (FG), 2013 10th IEEE Inter-
national Conference and Workshops on. IEEE.
Shi, J., Liu, X., Zong, Y., Qi, C., and Zhao, G. (2018).
Hallucinating face image by regularization models in
high-resolution feature space. In IEEE Transactions
on Image Processing. IEEE.
Wang, S.-J., Yan, W.-J., Li, X., Zhao, G., and Fu, X.
(2014a). Micro-expression recognition using dyna-
mic textures on tensor independent color space. In
2014 22nd International C onference on Pattern Re-
cognition (ICPR) . IEEE.
Wang, S.-J., Yan, W.-J. , Zhao, G., Fu, X., and Zhou, C.-G.
(2014b). Micro-expression recognition using robust
principal component analysis and local spatiotempo-
ral directional features. In Workshop at the European
conference on computer vision. Springer.
Wang, Y., See, J., Phan, R. C.-W., and Oh, Y.-H. (2014c).
Lbp with six intersection points: Reducing redundant
information in lbp-top for micro-expression recogni-
tion. In Asian Conference on Computer Vision. Sprin-
ger.
Wang, Y., See, J., Phan, R. C.-W., and Oh, Y.-H. (2015). Ef-
ficient spatio-temporal local binary patterns for spon-
taneous facial micro-expression recognition. In PloS
one. Public Library of Science.
Wang, Z., Miao, Z., Wu, Q. J., Wan, Y., and Tang, Z.
(2014d). Low-resolution face recognition: a review.
In The Visual Computer. Springer.
Xu, F., Zhang, J., and Wang, J. Z. (2017). Microexpression
identification and categorization using a facial dyna-
mics map. In IEEE Transactions on Affective Compu-
ting. IEEE.
Yan, W.-J., Li, X., Wang, S.-J., Zhao, G., Liu, Y.-J., Chen,
Y.-H., and Fu, X. (2014). Casme ii: An impro-
ved spontaneous micro-expression database and the
baseline evaluation. In PloS one. Public L ibrary of
Science.
Zhao, G. and Pietik¨ainen, M. (2007). Dynamic texture re-
cognition using local binary patterns with an applica-
tion to facial expressions. In IEEE transactions on
pattern analysis and machine intelligence. I EEE.
Zhou, Z., Zhao, G., and Pietik¨ainen, M. (2011). Towards a
practical lipreading system. In Computer Vision and
Pattern Recognition (CVPR), 2011 IEEE Conference
on. IEEE.