networks of respec tive sizes 3, 4 and 7, and six of the
genes invo lved in these networks are already kn own
to contribute to the disease onset. Applying the revi-
sed protocol to six other genome-wide d atasets will
allow us to confirm whether ranger can be considered
as a revelatory tool of duplicate IoIs.
REFERENCES
Aflakparast, M., Salimi, H., Gerami, A., Dub´e, M.-P., Vis-
weswaran, S., et al. (2014). Cuckoo search epistasis:
a new method for exploring significant genetic inter-
actions. Heredity, 112:666–764.
Ayers, K. and Cordell, H. (2010). SNP selection in genome-
wide and candidate gene studies via penalized logistic
regression. G enetic Epidemiology, 34(8):879–891.
Beam, A. , Motsinger-Reif, A., and Doyle, J. (2014). Baye-
sian neural networks for detecting epistasis i n genetic
association studies. BMC Bioinformatics, 15(1):368.
Chang, Y.-C., Wu, J.-T., Hong, M.-Y., Tung, Y.-A., Hsieh,
P.-H., et al. (2018). GenEpi: gene-based epista-
sis discovery using machine learning. bioRXiv, doi:
https://doi.org/10.1101/421719.
Chatelain, C., Durand, G., Thuillier, V., and Aug´e, F.
(2018). Perf ormance of epistasis detection methods
in semi-simulated GWA S. BMC bioinformatics,
19(1):231.
Fergus, P., Montanez, C., Abdulaimma, B., Lisboa, P., and
Chalmers, C. (2018). Utilising deep learning and ge-
nome wide association studies for epistatic-driven pre-
term birth classification in African-American women.
arXiv preprint, arXiv:1801.02977.
Furlong, L. (2013). Human diseases through the lens of
network biology. Trends in Genetics, 29:150–159.
Gao, H., Granka, J., and Feldman, M. (2010). On
the classification of epistatic interactions. Genetics,
184(3):827–837.
Gibert, J.-M., Blanco, J., Dolezal, M., Nolte, V., Peronnet,
F., and S chl¨otterer, C. (2017). Strong epistatic and
additive effects of linked candidate SNPs for D r oso-
phila pigmentation have implications for analysis of
genome-wide association studies results. G enome Bi-
ology, 18:126.
Gilbert-Diamond, D. and Moore, J. (2011). Analysis of
gene-gene interactions. Current Protocols in Human
Genetics, 0 1: Unit1.14.
Gola, D., Mahachie John, J., van Steen, K., and K¨onig,
I. (2016). A roadmap to multifactor dimensiona-
lity reduction methods. Briefings in Bioinformatics,
17(2):293–308.
Graham, D. and Xavier, R. (2013). From genetics of in-
flammatory bowel disease towards mechanistic insig-
hts. Trends in I mm unology, 34:371–378.
Grange, L., Bureau, J.-F., Nikolayeva, I., Paul, R., Van
Steen, K., et al. (2015). Filter-free exhaustive odds
ratio-based genome-wide interaction approach pin-
points evidence for interaction in the HLA region in
psoriasis. BMC Genetics, 16:11.
Han, B. and Chen, X.-W. (2011). bNEAT: a Bayesian
network method for detecting epistatic interactions in
genome-wide association studies. BMC Genomics,
12(Suppl.2):S9.
Han, B., Chen, X.-W., and Talebizadeh, Z . (2011). FEPI-
MB: identifying SNPs-disease association using a
Markov blanket-based approach. BMC Bioinforma-
tics, 12(Suppl.12):S3.
Han, B., Park, M., and Chen, X.-W. (2010). A Markov
blanket-based method for detecting causal SNPs in
GWAS. BMC Bioinformatics, 11(Suppl.3):S5.
Jiang, X., Neapolitan, R., Barmada, M., Visweswaran, S.,
and Cooper, G. (2010). A fast algorithm for lear-
ning epistatic genomic relationships. In Proceedings
of the Annual American Medical Informatics Associa-
tion Symposium (AMIA2010), pages 341–345.
Jing, P. and Shen, H. (2015). MACOED : a multi-objective
ant colony optimization algorithm for SNP epistasis
detection in genome-wide association studies. Bioin-
formatics, 31(5):634–641.
Khor, B., Gardet, A., and R amnik, J. (2011). Genetics and
pathogenesis of inflammatory bowel disease. Nature,
474(7351):307–317.
Li, Y., Xiao, X., Han, Y., Gorlova, O., Qian, D., et al.
(2018). Genome-wide interaction study of smoking
behavior and non-small cell lung cancer risk in Cau-
casian population. Carcinogenesis, 39(3):336–346.
Lin, H., Chen, Y., Tsai, Y., Qu, X., Tseng, T., and Park,
J. (2012). TRM: a powerful two-stage machine l ear-
ning approach for identifying SNP-SNP interactions.
Annals of Human Genetics, 76(1):53–62.
McGovern, D., Kugathasan, S., and Cho, J. (2015). Ge-
netics of inflammatory bowel diseases. Gastroentero-
logy, 149(5):1163–1176.
Mullis, M., Matsui, T., Schell, R., Foree, R., and Ehren-
reich, I. (2018). The complex underpinnings of ge-
netic background effects. Nature communications,
9(1):3548.
Nicodemus, K., Law, A., Radulescu, E., Luna, A., Ko-
lachana, B., et al. ( 2013). Biological validation of
increased schizophrenia risk with NRG1, ERBB4,
and AKT1 epistasis via functional neuroimaging in
healthy controls. Archives of General P sychiatry,
67(10):991–1001.
Ritchie, M. and Van Steen, K. (2018). The search for gene-
gene interactions in genome-wide association studies:
challenges in abundance of methods, practical con-
siderations, and biological interpretation. Annals of
Translational Medicine, 6(8):157.
Schwarz, D., K¨onig, I., and Ziegler, A. (2010). On safari
to random jungle: a fast implementation of random
forests for high-dimensional data. Bioinformatics,
26(14):1752–1758.
Shen, Y., Liu, Z., and Ott, J. (2012). Support vector ma-
chines with L1 penalty for detecting genegene inter-
actions. International Journal of Data Mining and Bi-
oinformatics, 6:463–470.
Sinoquet, C. and Niel, C. (2018). Enhancement of a
stochastic Markov blanket framework with ant co-
lony optimization, to uncover epistasis in genetic as-