and multi-view 3d object reconstruction. In Procee-
dings of the European Conference on Computer Vision
(ECCV).
Czech Technical University (CTU) et. al. (2018). Alice vi-
sion: Photogrammetric computer vision framework.
Accessed: 2018-07-04.
Ehlenbr
¨
oker, J.-F., M
¨
onks, U., and Lohweg, V. (2016). Sen-
sor defect detection in multisensor information fusion.
Journal of Sensors and Sensor Systems, 5(2):337–353.
Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse
odometry. IEEE transactions on pattern analysis and
machine intelligence, 4.
Engel, J., Sch
¨
ops, T., and Cremers, D. (2014). Lsd-slam:
Large-scale direct monocular slam. In European Con-
ference on Computer Vision, pages 834–849. Springer.
Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos,
A. S., Garnelo, M., Ruderman, A., Rusu, A. A., Da-
nihelka, I., Gregor, K., et al. (2018). Neural scene re-
presentation and rendering. Science, 360(6394):1204–
1210.
Forster, C., Pizzoli, M., and Scaramuzza, D. (2014). Svo:
Fast semi-direct monocular visual odometry. In Robo-
tics and Automation (ICRA), 2014 IEEE International
Conference on, pages 15–22. IEEE.
Jancosek, Michal and Pajdla, Tomas (2012). Cmp sfm web
service. Accessed: 2018-07-04.
Khaleghi, B., Khamis, A., Karray, F., and Razavi, S. (2013).
Multisensor data fusion: A review of the state-of-the-
art. 14.
Kostas Alexis, University of Nevada, Reno (2018). Lecture
slides - dr. kostas alexis. Accessed: 2018-07-08.
Krombach, N., Droeschel, D., and Behnke, S. (2016). Com-
bining feature-based and direct methods for semi-
dense real-time stereo visual odometry. In Internati-
onal Conference on Intelligent Autonomous Systems,
pages 855–868. Springer.
Marchthaler, R. and Dingler, S. (2017). Kalman-Filter:
Einf
¨
uhrung in die Zustandssch
¨
atzung und ihre Anwen-
dung f
¨
ur eingebettete Systeme. SpringerLink : B
¨
ucher.
Springer Fachmedien Wiesbaden.
Mohanty, V., Agrawal, S., Datta, S., Ghosh, A., Sharma,
V. D., and Chakravarty, D. (2016). Deepvo: A
deep learning approach for monocular visual odome-
try. CoRR, abs/1611.06069.
Mourikis, A. I. and Roumeliotis, S. I. (2007). A multi-state
constraint kalman filter for vision-aided inertial navi-
gation. In in Proc. IEEE Int. Conf. on Robotics and
Automation, pages 10–14.
Mueller, J. and Massaron, L. (2018). Artificial Intelligence
For Dummies. Wiley.
Mur-Artal, R. and Tard
´
os, J. D. (2017). Orb-slam2:
An open-source slam system for monocular, stereo,
and rgb-d cameras. IEEE Transactions on Robotics,
33(5):1255–1262.
Particke, Hiller, Patino-Studencki, Sippl, Feist, and Thie-
lecke (2017). Multiple intention tracking by a genera-
lized potential field approach.
Rui, Y. and Chen, Y. (2001). Better proposal distributi-
ons: Object tracking using unscented particle filter.
In Computer Vision and Pattern Recognition, 2001.
CVPR 2001. Proceedings of the 2001 IEEE Computer
Society Conference on, volume 2, pages II–II. IEEE.
Sch
¨
onberger, J. L. and Frahm, J.-M. (2016). Structure-
from-motion revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR).
Sebastian Thrun, Udacity, Inc. (2018). Artificial intelli-
gence for robotics. Accessed: 2018-07-04.
Thrun, S., Burgard, W., and Fox, D. (2005). Probabi-
listic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press.
Usenko, V., Engel, J., St
¨
uckler, J., and Cremers, D. (2016).
Direct visual-inertial odometry with stereo cameras.
In Robotics and Automation (ICRA), 2016 IEEE In-
ternational Conference on, pages 1885–1892. IEEE.
Vijayanarasimhan, S., Ricco, S., Schmid, C., Sukthan-
kar, R., and Fragkiadaki, K. (2017). Sfm-net: Le-
arning of structure and motion from video. CoRR,
abs/1704.07804.
Wan, E. and Van Der Merwe, R. (2000). The unscented
kalman filter for nonlinear estimation. pages 153–158.
Zhai, G., Meng, H., and Wang, X. (2014). A constant speed
changing rate and constant turn rate model for maneu-
vering target tracking. Sensors, 14(3):5239–5253.
B-SLAM-SIM: A Novel Approach to Evaluate the Fusion of Visual SLAM and GPS by Example of Direct Sparse Odometry and Blender
823