REFERENCES
Dua, D. and Karra Taniskidou, E. (2017). UCI Machine
Learning Repository. Irvine CA: University of
California, School of Information and Computer
Science. http://archive.ics.uci.edu/ml
Brodbeck, D. and Giradin, L. (2003). Design study: Using
multiple coordinated views to analyze geo-referenced
high-dimensional datasets. International Conference
on Coordinated and Multiple Views in Exploratory
Visualization, pages 104-111.
Chambers, J. M., Cleveland, W. S., Tukey, P. A., and
Kleiner, B. (1983). Graphical Methods for Data
Analysis.
Dias, D. B., Madeo, R. C. B., Rocha, T., Biscaro, H. H., and
Peres, S. M. (2009). Hand movement recognition for
Brazilian sign language: A study using distance-based
neural networks. International Joint Conference on
Neural Networks, pages 697-704.
Fanea, E., Carpendale, S., and Isenberg, T. (2005). An
interactive 3D integration of parallel coordinates and
star glyphs. IEEE Symposium on Information
Visualization (INFOVIS 2005), pages 149–156.
Ferdosi, B. and Roerdink, J. B. T. (2011). Visualizing high-
dimensional structures by dimension ordering and
filtering using subspace analysis. Computer Graphics
Forum, 30: 1121-1130.
Gruendl, H., Riehmann, P., Pausch, Y., and Froehlich, B.
(2016). Time-series plots integrated in parallel
coordinates displays. Eurographics/IEEE VGTC
Conference on Visualization, pages 321-330.
Heinrich, J. and Weiskopf, D. (2013). State of the art of
parallel coordinates. In STAR Proceedings of
Eurographics, pages 95–116.
Inselberg, A. (1997). Multidimensional detective. IEEE
Symposium on Information Visualization (INFOVIS
1997), pages 100-107.
Inselberg, A. (2009). Parallel coordinates: visual
multidimensional geometry and its application.
Springer, New York.
Johansson, J. and Forsell, F. (2016). Evaluation of parallel
coordinates” Overview, categorization and guidelines
for future research. IEEE Transactions on Visualization
and Computer Graphics, 22, 579-588.
Johansson, S. and Johansson, S. (2009). Interactive
dimensionality reduction through user-defined
combinations of quality metrics. IEEE Transactions on
Visualization and Computer Graphics, 15: 993–1000.
Jolliffe, J. (1986). Principal component analysis. Springer
Verlag.
Kaur, G. and Karki, B.B. (2018). Bifocal parallel
coordinates plot for multivariate data visualization. In
Int’l Joint Conf. on Computer Vision, Imaging and
Computer Graphics Theory and Applications
(VISIGRAPP 2018), pages 176-183.
Mead, Al. (1992). Review of the development of
multidimensional scaling methods. The Statistician,
33:27-35.
Novotny, M. and Hauser, H. (2006). Outlier-preserving
focus + context visualization in parallel coordinates.
IEEE Transactions on Visualization and Computer
Graphics, 12:893-900.
Riehmann, P., Opolka, J., and Froehlich, B. (2012). The
product explorer: Decision making with ease.
International Working Conference on Advanced Visual
Interfaces, pages 423-432.
Sangli, S.S., Kaur, G., Karki, B.B. (2016). Star plot
visualization of ultrahigh dimensional multivariate
data, Int'l Conf. on Advances in Big Data Analytics
(ABDA'16), pages 91-97
Sansen, J., Richer, G., Jourde, T., Lalanne, F., Auber, D.,
and Bourqui, R. (2017). Visual exploration of large
multidimensional data using parallel coordinates on big
data infrastructure. Informatics, 4: 21.
Shaw, C. D., Hall, J. A., Blahut, C., Erbert, D. S. and
Roberts, D. A. (1999). Using shape to visualize
multivariate data. Workshop on New Paradigms in
Information Visualization and Manipulation, ACM
Press, New York, pages 17-20.
Siirtola, H., Raiha, K. (2006). Interacting with parallel
coordinates. Interacting with Computers, 18:1278-
1309.
Turkay, C., Filzmoser, P., and Hauser, H. (2011). Brushing
dimensions: a dual visual analysis model for high
dimensional data. IEEE Transactions on Visualization
and Computer Graphics, 17:2591-2599.
Wolberg, W. H., Street, and W. N., Mangasarian, O. L.
(1994). Machine learning techniques to diagnose breast
cancer from fine-needle aspirates. Cancer Letters
77:163-171
Yang, J., Peng, W., Ward, M. O., and Rundensteiner, E. A.
(2003). Interactive hierarchical dimension ordering,
spacing and filtering for exploration of high
dimensional datasets. IEEE Symposium on Information
Visualization (INFOVIS 2003), pages 105-112.
IVAPP 2019 - 10th International Conference on Information Visualization Theory and Applications
274