REFERENCES
Ahmed, E., Jones, M. J., and Marks, T. K. (2015). An
improved deep learning architecture for person re-
identification. In Proc. 2015 IEEE Conf. on Computer
Vision and Pattern Recognition, pages 3908–3916.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The Cityscapes dataset for semantic ur-
ban scene understanding. In Proc. 2016 IEEE Conf.
on Computer Vision and Patt ern Recognition, pages
3213–3223.
Dalal, N., Triggs, B., and Schmid, C. (2006). Human de-
tection using oriented histograms of flow and appea-
rance. In Proc. 9th European Conf. on Computer Vi-
sion, vol. 2, pages 428–441.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2009). Pe-
destrian detection: A benchmark. In Proc. 2009 IEEE
Conf. on Computer Vision and Pattern Recognition,
pages 304–311.
Doll´ar, P., Wojek, C., Schiele, B., and Perona, P. (2012).
Pedestrian detection: An evaluation of the state of the
art. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 34(4):743–761.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D. A.,
and Ramanan, D. (2010). Object detection with
discriminatively trained part-based models. IEE E
Trans. on Pattern Analysis and Machine Intelligence,
32(9):1627–1645.
Kyutoku, H., Takahashi, T., Mekada, Y., Ide, I., and Murase,
H. (2011). On-road obstacle detection by comparing
present and past in-vehicle camera images. In Proc.
2011 IAPR Conf. on Machine Vision Applications, pa-
ges 357–360.
Mitsugami, I., Hattori, H., and Minoh, M. (2013). Impro-
ving human detection by long-term observation. In
Proc. 2nd IAPR Asi an Conf. on Pattern Recognition,
pages 662–666.
Premebida, C., Carreira, J., Batista, J., and Nunes, U.
(2014). Pedestrian detection combining RGB and
dense LIDAR data. In Proc. 2014 IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, pages 4112–4117.
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi,
A. (2016). You only look once: Unified, real-time ob-
ject detection. In Proc. 2016 IEEE Conf. on Computer
Vision and Pattern Recognition, pages 779–788.
Revaud, J., Weinzaepfel, P., Harchaoui, Z., and Schmid,
C. (2016). Deepmatching: Hierarchical deforma-
ble dense matching. Int. J. of Computer Vi sion,
120(3):300–323.
Shrivastava, A., Gupta, A., and Girshick, R. B. (2016). Trai-
ning region-based object detectors with online hard
example mining. In Proc. 2016 IEEE Conf. on Com-
puter Vision and Pattern Recognition, pages 761–769.
Statistics Bureau, Ministry of Internal Affairs and Com-
munications, Japan (2017). Japan statistical ye-
arbook 2018. http://www.stat.go.jp/english/data/
nenkan/67nenkan/index.htm (accessed 2018/9/28).
Yuan, Y., Xiong, Z., and Wang, Q. (2017). An incremen-
tal framework for video-based traffic sign detection,
tracking, and recognition. IEEE Trans. on Intelligent
Transportation Systems, 18(7):1918–1929.
Zhang, S., Benenson, R., and Schiele, B. (2017). Cityper-
sons: A diverse dataset for pedestrian detection. In
Proc. 2017 I EEE Conf. on Computer Vision and Pat-
tern Recognition, pages 4457–4465.