mation Sciences (ICCAIS), 2017 International Confe-
rence on, pages 175–180. IEEE.
Lee, Y., Yun, J., Hong, Y., Lee, J., and Jeon, M.
(2018). Accurate license plate recognition and super-
resolution using a generative adversarial networks on
traffic surveillance video. In 2018 IEEE Internatio-
nal Conference on Consumer Electronics-Asia (ICCE-
Asia), pages 1–4. IEEE.
Li, H. and Shen, C. (2016). Reading car license plates using
deep convolutional neural networks and lstms. arXiv
preprint arXiv:1601.05610.
Li, Y., Wang, N., Liu, J., and Hou, X. (2017). De-
mystifying neural style transfer. arXiv preprint
arXiv:1701.01036.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Nguyen, A., Bengio, Y., and Dosovitskiy, A. Plug & play
generative networks: Conditional iterative generation
of images in latent space.
Noh, S., Shim, D., and Jeon, M. (2016). Adaptive sliding-
window strategy for vehicle detection in highway en-
vironments. IEEE Transactions on Intelligent Trans-
portation Systems, 17(2):323–335.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the
difficulty of training recurrent neural networks. In In-
ternational Conference on Machine Learning, pages
1310–1318.
Peng, X., Tang, Z., Yang, F., Feris, R., and Me-
taxas, D. (2018). Jointly optimize data augmen-
tation and network training: Adversarial data aug-
mentation in human pose estimation. arXiv preprint
arXiv:1805.09707.
Pu, J., Liu, S., Ding, Y., Qu, H., and Ni, L. (2013). T-
watcher: A new visual analytic system for effective
traffic surveillance. In Mobile Data Management
(MDM), 2013 IEEE 14th International Conference on,
volume 1, pages 127–136. IEEE.
Radford, A., Metz, L., and Chintala, S. (2015). Unsuper-
vised representation learning with deep convolutio-
nal generative adversarial networks. arXiv preprint
arXiv:1511.06434.
Rajeswar, S., Subramanian, S., Dutil, F., Pal, C., and Cour-
ville, A. (2017). Adversarial generation of natural lan-
guage. arXiv preprint arXiv:1705.10929.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. arXiv preprint.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information
processing systems, pages 91–99.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252.
Shi, X., Zhao, W., and Shen, Y. (2005). Automatic license
plate recognition system based on color image pro-
cessing. In International Conference on Computati-
onal Science and Its Applications, pages 1159–1168.
Springer.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Smith, R. (2007). An overview of the tesseract ocr engine.
In Document Analysis and Recognition, 2007. ICDAR
2007. Ninth International Conference on, volume 2,
pages 629–633. IEEE.
Song, Y.-m. and Jeon, M. (2016). Online multiple ob-
ject tracking with the hierarchically adopted gm-
phd filter using motion and appearance. In Consu-
mer Electronics-Asia (ICCE-Asia), IEEE Internatio-
nal Conference on, pages 1–4. IEEE.
Wang, S.-Z. and Lee, H.-J. (2003). Detection and recogni-
tion of license plate characters with different appea-
rances. In Intelligent Transportation Systems, 2003.
Proceedings. 2003 IEEE, volume 2, pages 979–984.
IEEE.
Wang, X., Man, Z., You, M., and Shen, C. Adversarial ge-
neration of training examples: Applications to moving
vehicle license plate recognition.
Yoon, Y.-c., Boragule, A., Yoon, K., and Jeon, M. (2018).
Online multi-object tracking with historical appea-
rance matching and scene adaptive detection filtering.
arXiv preprint arXiv:1805.10916.
Zhang, H., Jia, W., He, X., and Wu, Q. (2006). Learning-
based license plate detection using global and local fe-
atures. In Pattern Recognition, 2006. ICPR 2006. 18th
International Conference on, volume 2, pages 1102–
1105. IEEE.
Zhang, J., Wang, F.-Y., Wang, K., Lin, W.-H., Xu, X., Chen,
C., et al. (2011). Data-driven intelligent transportation
systems: A survey. IEEE Transactions on Intelligent
Transportation Systems, 12(4):1624–1639.
Zherzdev, S. and Gruzdev, A. (2018). Lprnet: License plate
recognition via deep neural networks. arXiv preprint
arXiv:1806.10447.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. arXiv preprint
arXiv:1703.10593.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
76