REFERENCES
Bond, J. H. (1993). Polyp guideline: diagnosis, treatment,
and surveillance for patients with nonfamilial colorec-
tal polyps. Annals of internal medicine, 119(8):836–
843.
Byers, T., Levin, B., Rothenberger, D., Dodd, G. D., Smith,
R. A., Detection, A. C. S., and on Colorectal Cancer),
T. A. G. (1997). American cancer society guidelines
for screening and surveillance for early detection of
colorectal polyps and cancer: update 1997. CA: a can-
cer journal for clinicians, 47(3):154–160.
Carreira, J. and Sminchisescu, C. (2011). Cpmc: Automa-
tic object segmentation using constrained parametric
min-cuts. IEEE Transactions on Pattern Analysis &
Machine Intelligence, (7):1312–1328.
Fischler, M. A. and Bolles, R. C. (1981). A paradigm
for model fitting with applications to image analy-
sis and automated cartography (reprinted in readings
in computer vision, ed. ma fischler,”. Comm. ACM,
24(6):381–395.
Force, U. P. S. T. (1989). Guide to clinical preventive servi-
ces: report of the US Preventive Services Task Force.
DIANE publishing.
Grubbs, F. E. et al. (1950). Sample criteria for testing out-
lying observations. The Annals of Mathematical Sta-
tistics, 21(1):27–58.
Heikkila, J. and Silv
´
en, O. (1997). A four-step camera ca-
libration procedure with implicit image correction. In
Computer Vision and Pattern Recognition, 1997. Pro-
ceedings., 1997 IEEE Computer Society Conference
on, pages 1106–1112. IEEE.
Horn, B. K. (1989). Obtaining shape from shading infor-
mation. In Shape from shading, pages 123–171. MIT
press.
Iwahori, Y., Tatematsu, K., Nakamura, T., Fukui, S., Wood-
ham, R. J., and Kasugai, K. (2015). 3d shape recovery
from endoscope image based on both photometric and
geometric constraints. In Knowledge-Based Informa-
tion Systems in Practice, pages 65–80. Springer.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Shafer, S. A. (1985). Using color to separate reflection com-
ponents. Color Research & Application, 10(4):210–
218.
Tchoulack, S., Langlois, J. P., and Cheriet, F. (2008). A vi-
deo stream processor for real-time detection and cor-
rection of specular reflections in endoscopic images.
In Circuits and Systems and TAISA Conference, 2008.
NEWCAS-TAISA 2008. 2008 Joint 6th International
IEEE Northeast Workshop on, pages 49–52. IEEE.
Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeul-
ders, A. W. (2013). Selective search for object re-
cognition. International journal of computer vision,
104(2):154–171.
Usami, H., Hanai, Y., Iwahori, Y., and Kasugai, K. (2016).
3d shape recovery of polyp using two light sources
endoscope. In Computer and Information Science
(ICIS), 2016 IEEE/ACIS 15th International Confe-
rence on, pages 1–6. IEEE.
Winawer, S. J., Fletcher, R. H., Miller, L., Godlee, F., Sto-
lar, M., Mulrow, C., Woolf, S., Glick, S., Ganiats, T.,
Bond, J., et al. (1997). Colorectal cancer screening:
clinical guidelines and rationale. Gastroenterology,
112(2):594–642.
Wu, C., Narasimhan, S. G., and Jaramaz, B. (2010). A
multi-image shape-from-shading framework for near-
lighting perspective endoscopes. International Jour-
nal of Computer Vision, 86(2-3):211–228.
Yang, Q., Tang, J., and Ahuja, N. (2015). Efficient and
robust specular highlight removal. IEEE transacti-
ons on pattern analysis and machine intelligence,
37(6):1304–1311.
Yang, Q., Wang, S., and Ahuja, N. (2010). Real-time specu-
lar highlight removal using bilateral filtering. In Eu-
ropean conference on computer vision, pages 87–100.
Springer.
Zhang, Z. (2000). A flexible new technique for camera ca-
libration. IEEE Transactions on pattern analysis and
machine intelligence, 22(11):1330–1334.
Polyp Shape Recovery using Vascular Border from Single Colonoscopy Image
111