limitations to the accuracy of nucleotide substitution
models. BMC Evolutionary Biology, 15(1):36.
Dudkiewicz, A., Mackiewicz, P., Nowicka, A., Kowalezuk,
M., Mackiewicz, D., Polak, N., Smolarczyk, K., Ba-
naszak, J., Dudek, M. R., and Cebrat, S. (2005). Cor-
respondence between mutation and selection pressure
and the genetic code degeneracy in the gene evolution.
Future Generation Computer Systems, 21(7):1033–
1039.
Epstein, C. J. (1966). Role of the amino-acid “code” and of
selection for conformation in the evolution of proteins.
Nature, 210(5031):25–28.
Freeland, S. J. and Hurst, L. D. (1998a). The genetic code
is one in a million. Journal of Molecular Evolution,
47(3):238–248.
Freeland, S. J. and Hurst, L. D. (1998b). Load minimiza-
tion of the genetic code: history does not explain the
pattern. Proceedings of the Royal Society of London
B: Biological Sciences, 265(1410):2111–2119.
Freeland, S. J., Knight, R. D., Landweber, L. F., and Hurst,
L. D. (2000). Early fixation of an optimal genetic
code. Molecular Biology and Evolution, 17(4):511–
518.
Freeland, S. J., Wu, T., and Keulmann, N. (2003). The
case for an error minimizing standard genetic code.
Origins of Life and Evolution of the Biosphere, 33(4-
5):457–477.
Gilis, D., Massar, S., Cerf, N. J., and Rooman, M. (2001).
Optimality of the genetic code with respect to protein
stability and amino-acid frequencies. Genome Biol-
ogy, 2(11):research0049–1.
Gojobori, T., Li, W.-H., and Graur, D. (1982). Patterns of
nucleotide substitution in pseudogenes and functional
genes. Journal of Molecular Evolution, 18(5):360–
369.
Goldberg, A. L. and Wittes, R. E. (1966). Genetic code:
aspects of organization. Science, 153(3734):420–424.
Goodarzi, H., Najafabadi, H. S., and Torabi, N. (2005).
Designing a neural network for the constraint opti-
mization of the fitness functions devised based on the
load minimization of the genetic code. Biosystems,
81(2):91–100.
Haig, D. and Hurst, L. D. (1991). A quantitative measure
of error minimization in the genetic code. Journal of
Molecular Evolution, 33(5):412–417.
Hershberg, R. and Petrov, D. A. (2008). Selection on codon
bias. Annual Review of Genetics, 42:287–299.
Khorana, H. G., B
¨
uuchi, H., Ghosh, H., Gupta, N., Jacob,
T., K
¨
ossel, H., Morgan, R., Narang, S., Ohtsuka, E.,
and Wells, R. (1966). Polynucleotide synthesis and
the genetic code. In Cold Spring Harbor Symposia on
Quantitative Biology, volume 31, pages 39–49. Cold
Spring Harbor Laboratory Press.
Kowalczuk, M., Mackiewicz, P., Mackiewicz, D., Nowicka,
A., Dudkiewicz, M., Dudek, M. R., and Cebrat, S.
(2001). High correlation between the turnover of nu-
cleotides under mutational pressure and the dna com-
position. BMC Evolutionary Biology, 1(1):13.
Kumar, S. (1996). Patterns of nucleotide substitution in mi-
tochondrial protein coding genes of vertebrates. Ge-
netics, 143(1):537–548.
Lee, J. R., Gharan, S. O., and Trevisan, L. (2014). Mul-
tiway spectral partitioning and higher-order cheeger
inequalities. Journal of the ACM (JACM), 61(6):37.
Levin, D. A., Peres, Y., and Wilmer, E. L. (2009). Markov
chains and mixing times. American Mathematical So-
ciety, Providence, Rhode Island.
Lynch, M. (2010). Rate, molecular spectrum, and conse-
quences of human mutation. Proceedings of the Na-
tional Academy of Sciences of the United States of
America, 107(3):961–968.
Lyons, D. M. and Lauring, A. S. (2017). Evidence for the
selective basis of transition-to-transversion substitu-
tion bias in two rna viruses. Molecular Biology and
Evolution, 34(12):3205–3215.
Mackiewicz, P., Biecek, P., Mackiewicz, D., Kiraga, J.,
Baczkowski, K., Sobczynski, M., and Cebrat, S.
(2008). Optimisation of asymmetric mutational pres-
sure and selection pressure around the universal ge-
netic code. Computational Science - ICCS 2008,
Proceedings, Lecture Notes in Computer Science,
5103:100–109.
Massey, S. E. (2008). A neutral origin for error minimiza-
tion in the genetic code. Journal of Molecular Evolu-
tion, 67(5):510–516.
Morton, B. R. (2001). Selection at the amino acid level can
influence synonymous codon usage: Implications for
the study of codon adaptation in plastid genes. Genet-
ics, 159(1):347–358.
Nirenberg, M., Caskey, T., Marshall, R., Brimacombe,
R., Kellogg, D., Doctor, B., Hatfield, D., Levin, J.,
Rottman, F., Pestka, S., et al. (1966). The rna code
and protein synthesis. In Cold Spring Harbor sym-
posia on quantitative biology, volume 31, pages 11–
24. Cold Spring Harbor Laboratory Press.
Novozhilov, A. S., Wolf, Y. I., and Koonin, E. V. (2007).
Evolution of the genetic code: partial optimization of
a random code for robustness to translation error in a
rugged fitness landscape. Biology Direct, 2.
Petrov, D. A. and Hartl, D. L. (1999). Patterns of nucleotide
substitution in drosophila and mammalian genomes.
Proceedings of the National Academy of Sciences of
the United States of America, 96(4):1475–1479.
Rosenberg, M. S., Subramanian, S., and Kumar, S. (2003).
Patterns of transitional mutation biases within and
among mammalian genomes. Molecular biology and
evolution, 20(6):988–993.
Santos, J. and Monteagudo,
´
A. (2011). Simulated evolution
applied to study the genetic code optimality using a
model of codon reassignments. BMC Bioinformatics,
12.
Santos, J. and Monteagudo,
´
A. (2017). Inclusion of the fit-
ness sharing technique in an evolutionary algorithm
to analyze the fitness landscape of the genetic code
adaptability. BMC Bioinformatics, 18(1):195.
Tlusty, T. (2010). A colorful origin for the genetic code: In-
formation theory, statistical mechanics and the emer-
gence of molecular codes. Physics of Life Reviews,
7(3):362–376.
BIOINFORMATICS 2019 - 10th International Conference on Bioinformatics Models, Methods and Algorithms
64