McKinney, W. (2011). pandas: a Foundational Python Li-
brary for Data Analysis and Statistics. Python for
High Performance and Scientific Computing, pages 1–
9.
Park, H. A. (2013). An introduction to logistic regression:
From basic concepts to interpretation with particu-
lar attention to nursing domain. Journal of Korean
Academy of Nursing, 43(2):154–164.
Paulhus, D. L. and Vazire, S. (2007). The Self-Report
Method. In Robins, R. W., Fraley, R. C., and Krueger,
R., editors, Handbook of research methods in person-
ality psychology, chapter 13, pages 224–239. Guil-
ford, New York.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, É. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Rassin, E. (2006). A psychological theory of indecisive-
ness. Netherlands Journal of Psychology, 63(1):2–13.
Schneider, I. K., van Harreveld, F., Rotteveel, M., Topolin-
ski, S., van der Pligt, J., Schwarz, N., and Koole, S. L.
(2015). The path of ambivalence: tracing the pull of
opposing evaluations using mouse trajectories. Fron-
tiers in Psychology, 6(996):1–12.
Schwarz, N. and Hippler, H.-J. (1991). Response Alterna-
tives: The Impact of Their Choice and Presentation
Order. In Biemer, P., Groves, R., Lyberg, L., Math-
iowetz, N., and Sudman, S., editors, Measurement er-
ror in surveys, chapter 3, pages 41–56. Wiley, Chich-
ester.
Shalabi, L. A., Shaaban, Z., and Kasasbeh, B. (2006). Data
Mining: A Preprocessing Engine. Journal of Com-
puter Science, 2(9):735–739.
Shalizi, C. R. (2018). Advanced Data Analysis from an El-
ementary Point of View.
Sperandei, S. (2014). Understanding logistic regression
analysis. Biochemia Medica, 24(1):12–18.
Tan, P. K., Downey, T. J., Spitznagel, E. L., Xu, P., Fu,
D., Dimitrov, D. S., Lempicki, R. A., Raaka, B. M.,
and Cam, M. C. (2003). Evaluation of gene expres-
sion measurements from commercial microarray plat-
forms. Nucleic Acids Research, 31(19):5676–5684.
Witten, I. H. and Frank, E. (2005). Data Mining - Practi-
cal Machine Learning Tools and Techniques. Elsevier,
San Francisco, second edition.
Zheng, N., Paloski, A., and Wang, H. (2011). An efficient
user verification system via mouse movements. Pro-
ceedings of the 18th ACM conference on Computer
and communications security - CCS ’11, pages 139–
150.
Zushi, M., Miyazaki, Y., and Norizuki, K. (2012). Web
application for recording learners’ mouse trajecto-
ries and retrieving their study logs for data analysis.
Knowledge Management and E-Learning: An Inter-
national Journal, 4(1):37–50.
BIOSIGNALS 2019 - 12th International Conference on Bio-inspired Systems and Signal Processing
162