ACKNOWLEDGEMENTS
The authors also express their gratitude and ackno-
wledge the support of NVIDIA Corporation with the
donation of the Titan Xp GPU used for this research
and the financial support received from the Federal In-
stitute of Education, Science and Technology of Mato
Grosso.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,
Citro, C., Corrado, G. S., Davis, A., Dean, J., De-
vin, M., Ghemawat, S., Goodfellow, I., Harp, A., Ir-
ving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser,
L., Kudlur, M., Levenberg, J., Man
´
e, D., Monga, R.,
Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,
J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,
Vanhoucke, V., Vasudevan, V., Vi
´
egas, F., Vinyals, O.,
Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and
Zheng, X. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software availa-
ble from tensorflow.org.
Al-hiary, H., Bani-ahmad, S., Reyalat, M., Braik, M., and
Alrahamneh, Z. (2011). Fast and accurate detection
and classification of plant diseases. International
Journal of Computer Applications, 17(1):31 – 38.
Altieri, M. (2018). Agroecology: The Science Of Sustai-
nable Agriculture. CRC Press, Endereo, 2nd edition
edition.
Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales,
F. J., Epstein, P. R., and Daszak, P. (2004). Emerging
infectious diseases of plants: pathogen pollution, cli-
mate change and agrotechnology drivers. Trends in
Ecology & Evolution, 19(10):535 – 544.
Arnal Barbedo, J. G. (2013). Digital image processing
techniques for detecting, quantifying and classifying
plant diseases. SpringerPlus, 2(1):660.
Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., and Bas-
kurt, A. (2011). Sequential deep learning for human
action recognition. In International Workshop on Hu-
man Behavior Understanding, pages 29–39. Springer.
Chollet, F. et al. (2015). Keras.
https://github.com/fchollet/keras.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09.
Ferentinos, K. P. (2018). Deep learning models for plant
disease detection and diagnosis. Computers and Elec-
tronics in Agriculture, 145:311 – 318.
Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.
org.
Hughes, D., Salath
´
e, M., et al. (2015). An open access re-
pository of images on plant health to enable the deve-
lopment of mobile disease diagnostics. arXiv preprint
arXiv:1511.08060.
Jabal, M. F. A., Hamid, S., Shuib, S., Ahmad, I., Jabal, M.
F. A., Hamid, S., Shuib, S., and Ahmad, I. (2013).
Leaf Features Extraction and Recognition Approa-
ches To Classify Plant. Journal of Computer Science,
9(10):1295–1304.
Ji, S., Xu, W., Yang, M., and Yu, K. (2013). 3d convolu-
tional neural networks for human action recognition.
IEEE transactions on pattern analysis and machine
intelligence, 35(1):221–231.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthan-
kar, R., and Fei-Fei, L. (2014). Large-scale video
classification with convolutional neural networks. In
CVPR.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C. J. C., Bottou,
L., and Weinberger, K. Q., editors, Advances in Neu-
ral Information Processing Systems 25, pages 1097–
1105. Curran Associates, Inc.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep lear-
ning. Nature, 521(7553):436–444.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lin, Z., Mu, S., Shi, A., Pang, C., and Sun, X. (2018). A
novel method of maize leaf disease image identifica-
tion based on a multichannel convolutional neural net-
work. Transactions of the ASABE, 0(0):0.
Lu, Y., Yi, S., Zeng, N., Liu, Y., and Zhang, Y. (2017).
Identification of rice diseases using deep convolutio-
nal neural networks. Neurocomputing, 267:378 – 384.
Mahlein, A.-K. (2016). Plant disease detection by ima-
ging sensors–parallels and specific demands for preci-
sion agriculture and plant phenotyping. Plant Disease,
100(2):241–251.
Miller, S. A., Beed, F. D., and Harmon, C. L. (2009). Plant
Disease Diagnostic Capabilities and Networks. An-
nual Review of Phytopathology, 47(1):15–38.
Mohanty, S., Hughes, D., and Salath, M. (2016). Using
deep learning for image-based plant disease detection.
Frontiers in Plant Science, 7(September).
Pan, S. J. and Yang, Q. (2010). A survey on transfer le-
arning. IEEE Transactions on Knowledge and Data
Engineering, 22(10):1345–1359.
Patil, S. B. and Bodhe, S. K. (2011). Leaf disease severity
measurement using image processing.
Pawara, P., Okafor, E., Surinta, O., Schomaker, L., and Wie-
ring, M. (2017). Comparing local descriptors and bags
of visual words to deep convolutional neural networks
for plant recognition. In Proceedings of the 6th Inter-
national Conference on Pattern Recognition Applica-
tions and Methods, ICPRAM 2017, Porto, Portugal,
February 24-26, 2017., pages 479–486.
Pydipati, R., Burks, T., and Lee, W. (2006). Identification of
citrus disease using color texture features and discri-
minant analysis. Computers and Electronics in Agri-
culture, 52(1):49 – 59.
Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C.,
Dehne, H.-W., and Plmer, L. (2010). Early detection
and classification of plant diseases with support vector
Plant Diseases Recognition from Digital Images using Multichannel Convolutional Neural Networks
457