national Journal of Robotics Research, 35(10):1157–
1163.
Caballero, F., Merino, L., Ferruz, J., And, A. O. J. o. I., and
2009. Vision-based odometry and SLAM for medium
and high altitude flying UAVs. Springer.
Carlone, L., Tron, R., Daniilidis, K., and Dellaert, F. Initia-
lization Techniques for 3D SLAM: a Survey on Rota-
tion Estimation and its Use in Pose Graph Optimiza-
tion.
Chetverikov, D., Svirko, D., Recognition, D. S. P., and
2002. The trimmed iterative closest point algorithm.
ieeexplore.ieee.org.
Cvi
ˇ
si
´
c, I.,
´
Cesi
´
c, J., Markovi
´
c, I., and Petrovi
´
c, I. (2017).
SOFT-SLAM: Computationally Efficient Stereo Vi-
sual SLAM for Autonomous UAVs. Journal of field
robotics.
Cvi
ˇ
si
´
c, I. and Petrovi
´
c, I. (2015). Stereo odometry based on
careful feature selection and tracking. In Mobile Ro-
bots (ECMR), 2015 European Conference on, pages
1–6. IEEE.
Echeverria, G., Lassabe, N., Robotics, A. D., Automation,
and 2011. Modular open robots simulation engine:
Morse. Citeseer.
Engel, J., Sch
¨
ops, T., and Cremers, D. (2014). LSD-SLAM:
Large-Scale Direct Monocular SLAM. pages 834–
849.
Engel, J., St
¨
uckler, J., , Systems, D. C. I. R., and 2015.
Large-scale direct SLAM with stereo cameras. ieeex-
plore.ieee.org.
Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. Virtual Wor-
lds as Proxy for Multi-Object Tracking Analysis.
Geiger, A. (2012). Libviso2: C++ library for visual odome-
try 2, www.cvlibs.net/software/libviso/.
Geiger, A., Lenz, P., and Urtasun, R. (2012). Are we re-
ady for autonomous driving? the kitti vision bench-
mark suite. In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 3354–
3361. IEEE.
Geiger, A., Ziegler, J., and Stiller, C. (2011). Stereoscan:
Dense 3d reconstruction in real-time. In Intelligent
Vehicles Symposium (IV), 2011 IEEE, pages 963–968.
Ieee.
Hirschmuller, H. (2006). Stereo vision in structured en-
vironments by consistent semi-global matching. In
Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 2, pages
2386–2393. IEEE.
Howard, A. (2008). Real-time stereo visual odometry for
autonomous ground vehicles. In Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ Internati-
onal Conference on, pages 3946–3952. IEEE.
Kaess, M., Ni, K., , Automation, F. D. R., 2009, and 2009.
Flow separation for fast and robust stereo odometry.
ieeexplore.ieee.org.
Karlsson, R., Schon, T., Aerospace, D. T., and 2008. Uti-
lizing model structure for efficient simultaneous loca-
lization and mapping for a UAV application. ieeex-
plore.ieee.org.
Kitt, B., Geiger, A., and Lategahn, H. (2010). Visual odo-
metry based on stereo image sequences with ransac-
based outlier rejection scheme. In Intelligent Vehicles
Symposium (IV), 2010 IEEE, pages 486–492. IEEE.
Kuschk, G., Bozic, A., and Cremers, D. (2017). Real-time
variational stereo reconstruction with applications to
large-scale dense SLAM. In 2017 IEEE Intelligent
Vehicles Symposium (IV), pages 1348–1355. IEEE.
Lategahn, H., Geiger, A., (ICRA), B. K. R., Automation,
and 2011. Visual SLAM for autonomous ground vehi-
cles. ieeexplore.ieee.org.
Mayer, N., Ilg, E., H
¨
ausser, P., Fischer, P., Cremers, D.,
Dosovitskiy, A., and Brox, T. A Large Dataset to Train
Convolutional Networks for Disparity, Optical Flow,
and Scene Flow Estimation.
Mur-Artal, R., on JMM Montiel IEEE Transactions, and
2015. ORB-SLAM: a versatile and accurate mono-
cular SLAM system. ieeexplore.ieee.org.
Pirchheim, C., Mixed, D. S., Augmented, and 2013. Hand-
ling pure camera rotation in keyframe-based SLAM.
ieeexplore.ieee.org.
Pire, T., Baravalle, R., D’Alessandro, A., and Civera, J.
(2018). Real-time dense map fusion for stereo SLAM.
Robotica, pages 1–17.
Sanfourche, M., , Robots, V. V. I., and 2013. evo: A real-
time embedded stereo odometry for mav applications.
ieeexplore.ieee.org.
Tanner, M., Pini
´
es, P., Paz, L. M., and Newman, P. DEN-
SER Cities: A System for Dense Efficient Recon-
structions of Cities.
Zhang, Y., Qiu, W., Chen, Q., Hu, X., arXiv preprint
ArXiv:1612.04647, A. Y., and 2016. Unrealste-
reo: A synthetic dataset for analyzing stereo vision.
arxiv.org.
Zhu, J. (2017). Image Gradient-based Joint Direct Visual
Odometry for Stereo Camera. In Int. Jt. Conf. Artif.
Intell, pages 4558–4564.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
848