Table 1: Normalized MSE values in case of LFFTP and
CFFTP for increasing dynamic range of object height.
Dynamic range of Normalized MSE
the object height LFFTP CFFTP
± 4 0.00 0.00
± 8 0.00 0.00
± 16 0.02 0.00
± 24 0.85 0.00
± 40 4.66 0.00
± 56 10.01 0.00
± 80 16.43 0.01
± 120 19.44 0.10
± 160 18.06 5.83
with sinusoidal intensity variations along the radial
direction. A new algorithm is also proposed for retrie-
ving the phase information from the circular fringes.
The proposed CFFTP has been evaluated for varying
dynamic ranges and fringe frequencies. It is found
that the proposed algorithm significantly outperforms
the existing LFFTP, particularly at high dynamic ran-
ges and low fringe frequencies. In the future work,
we plan to evaluate the proposed CFFTP method for
the 3D profiling of the real-world objects.
REFERENCES
Asundi, A. and Wensen, Z. (1998). Fast phase-unwrapping
algorithm based on a gray-scale mask and flood fill.
Applied optics, 37(23):5416–5420.
Baldi, A. (2003). Phase unwrapping by region growing.
Applied optics, 42(14):2498–2505.
Chen, L., Quan, C., Tay, C. J., and Fu, Y. (2005). Shape me-
asurement using one frame projected sawtooth fringe
pattern. Optics communications, 246(4-6):275–284.
Dias, J. M. and Leit
˜
ao, J. M. (2002). The ZπM algorithm:
a method for interferometric image reconstruction in
SAR/SAS. IEEE Transactions on Image processing,
11(4):408–422.
Dursun, A.,
¨
Ozder, S., and Ecevit, F. N. (2004). Conti-
nuous wavelet transform analysis of projected fringe
patterns. Measurement Science and Technology,
15(9):1768.
Gdeisat, M. A., Burton, D. R., and Lalor, M. J. (2006). Spa-
tial carrier fringe pattern demodulation by use of a
two-dimensional continuous wavelet transform. Ap-
plied optics, 45(34):8722–8732.
Goldstein, R. M., Zebker, H. A., and Werner, C. L. (1988).
Satellite radar interferometry: Two-dimensional phase
unwrapping. Radio science, 23(4):713–720.
Gorthi, S. S. and Rastogi, P. (2010). Fringe projection
techniques: whither we are? Optics and lasers in en-
gineering, 48(IMAC-REVIEW-2009-001):133–140.
Gutmann, B. and Weber, H. (2000). Phase unwrapping with
the branch-cut method: role of phase-field direction.
Applied optics, 39(26):4802–4816.
Iwata, K., Kusunoki, F., Moriwaki, K., Fukuda, H., and
Tomii, T. (2008). Three-dimensional profiling using
the fourier transform method with a hexagonal grating
projection. Applied optics, 47(12):2103–2108.
Jia, P., Kofman, J., and English, C. (2008). Error com-
pensation in two-step triangular-pattern phase-shifting
profilometry. Optics and Lasers in Engineering,
46(4):311–320.
Kemao, Q. (2004). Windowed fourier transform for fringe
pattern analysis. Applied Optics, 43(13):2695–2702.
Kemao, Q. (2007). Two-dimensional windowed fourier
transform for fringe pattern analysis: principles, ap-
plications and implementations. Optics and Lasers in
Engineering, 45(2):304–317.
Lin, J.-F. and Su, X. (1995). Two-dimensional fourier trans-
form profilometry for the automatic measurement of
three-dimensional object shapes. Optical Engineer-
ing, 34(11):3297–3303.
Sajan, M., Tay, C., Shang, H., and Asundi, A. (1998). Im-
proved spatial phase detection for profilometry using a
tdi imager. Optics communications, 150(1-6):66–70.
Servin, M., Cuevas, F. J., Malacara, D., Marroquin, J. L.,
and Rodriguez-Vera, R. (1999). Phase unwrapping
through demodulation by use of the regularized phase-
tracking technique. Applied Optics, 38(10):1934–
1941.
Su, X. and Chen, W. (2001). Fourier transform profilo-
metry:: a review. Optics and lasers in Engineering,
35(5):263–284.
Takeda, M. and Mutoh, K. (1983). Fourier transform profi-
lometry for the automatic measurement of 3-d object
shapes. Applied optics, 22(24):3977–3982.
Toyooka, S. and Iwaasa, Y. (1986). Automatic profilome-
try of 3-d diffuse objects by spatial phase detection.
Applied Optics, 25(10):1630–1633.
Zhang, C., Huang, P. S., and Chiang, F.-P. (2002). Mi-
croscopic phase-shifting profilometry based on digi-
tal micromirror device technology. Applied optics,
41(28):5896–5904.
Zhang, S., Li, X., and Yau, S.-T. (2007). Multilevel
quality-guided phase unwrapping algorithm for real-
time three-dimensional shape reconstruction. Applied
optics, 46(1):50–57.
Zhao, H., Zhang, C., Zhou, C., Jiang, K., and Fang, M.
(2016). Circular fringe projection profilometry. Optics
letters, 41(21):4951–4954.
Zhong, J. and Weng, J. (2004). Spatial carrier-fringe pat-
tern analysis by means of wavelet transform: wavelet
transform profilometry. Applied optics, 43(26):4993–
4998.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
856