zero-shot learning using webly-supervised data, and
a deeper investigation of entropy-based noise mitiga-
tion. We are also interested in investigating the po-
tential for using entropy-based problem class iden-
tification as a means to articulate better queries for
problem classes, leading to an iterative query-train-
requery-retrain cycle in order to improve robustness.
REFERENCES
Baraldi, L., Paci, F., Serra, G., Benini, L., and Cucchiara,
R. (2015). Gesture recognition using wearable vi-
sion sensors to enhance visitors’ museum experiences.
IEEE Sens. J, 15(5):2705–2714.
Barandela, R. and Gasca, E. (2000). Decontamination
of training samples for supervised pattern recogni-
tion methods. In Joint IAPR International Work-
shops on Statistical Techniques in Pattern Recognition
(SPR) and Structural and Syntactic Pattern Recogni-
tion (SSPR), pages 621–630. Springer.
Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C.,
Cyganiak, R., and Hellmann, S. (2009). Dbpedia-a
crystallization point for the web of data. Web Seman-
tics: science, services and agents on the world wide
web, 7(3):154–165.
Brodley, C. E. and Friedl, M. A. (1999). Identifying mis-
labeled training data. Journal of artificial intelligence
research, 11:131–167.
Chen, H. and Rahman, I. (2018). Cultural tourism: An
analysis of engagement, cultural contact, memorable
tourism experience and destination loyalty. Tourism
management perspectives, 26:153–163.
Chen, X. and Gupta, A. (2015). Webly supervised learn-
ing of convolutional networks. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 1431–1439.
Cucchiara, R., Grana, C., Borghesani, D., Agosti, M., and
Bagdanov, A. D. (2012). Multimedia for cultural her-
itage: Key issues. In Multimedia for Cultural Her-
itage, pages 206–216. Springer.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Karaman, S., Bagdanov, A. D., Landucci, L., D’Amico,
G., Ferracani, A., Pezzatini, D., and Del Bimbo, A.
(2016). Personalized multimedia content delivery on
an interactive table by passive observation of mu-
seum visitors. Multimedia Tools and Applications,
75(7):3787–3811.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International Confer-
ence on Machine Learning, pages 1188–1196.
Li, Y., Crandall, D. J., and Huttenlocher, D. P. (2009). Land-
mark classification in large-scale image collections. In
Computer vision, 2009 IEEE 12th international con-
ference on, pages 1957–1964. IEEE.
Mendes, P. N., Jakob, M., Garc
´
ıa-Silva, A., and Bizer, C.
(2011). Dbpedia spotlight: shedding light on the web
of documents. In Proceedings of the 7th international
conference on semantic systems, pages 1–8. ACM.
Mensink, T. and Van Gemert, J. (2014). The rijksmuseum
challenge: Museum-centered visual recognition. In
Proceedings of International Conference on Multime-
dia Retrieval, page 451. ACM.
Raguram, R., Wu, C., Frahm, J.-M., and Lazebnik, S.
(2011). Modeling and recognition of landmark image
collections using iconic scene graphs. International
journal of computer vision, 95(3):213–239.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International Journal of Com-
puter Vision, 115(3):211–252.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Sukhbaatar, S. and Fergus, R. (2014). Learning from
noisy labels with deep neural networks. CoRR,
abs/1406.2080.
Temmermans, F., Jansen, B., Deklerck, R., Schelkens, P.,
and Cornelis, J. (2011). The mobile museum guide:
artwork recognition with eigenpaintings and surf. In
Proceedings of the 12th International Workshop on
Image Analysis for Multimedia Interactive Services.
Valtysson, B. (2012). Europeana: The digital construction
of europe’s collective memory. Information, Commu-
nication & Society, 15(2):151–170.
Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2017).
Show and tell: Lessons learned from the 2015 mscoco
image captioning challenge. IEEE transactions on
pattern analysis and machine intelligence, 39(4):652–
663.
Westlake, N., Cai, H., and Hall, P. (2016). Detecting people
in artwork with cnns. In Computer Vision – ECCV
2016 Workshops, pages 825–841.
Xian, Y., Schiele, B., and Akata, Z. (2017). Zero-shot learn-
ing - the good, the bad and the ugly. In IEEE Com-
puter Vision and Pattern Recognition (CVPR).
NoisyArt: A Dataset for Webly-supervised Artwork Recognition
475