literature (Klein-Tasman and Mervis, 2018), as well
as the chromosome 15 (Cooper et al., 2011; Sanders
et al., 2011; Sieg and Karl, 1990; Battaglia, 2008).
6 CONCLUSIONS
This paper proposes a methodology that is a fusion of
multiple different techniques with the aim to discover
a reliable biomarker set for autism recognition. Signal
processing technique is used to normalize the gene ex-
pression dataset, and a combination with the entropy-
based method is used to obtain different biomarkers
sets. The reliability of the biomarkers sets is mea-
sured by following standard ML approach including
discriminative and generative classification methods.
In order to find the best model, and therefore, the best
biomarkers set, a specific ranking method is applied.
The biomarkers set is further analyzed and compared
with the published literature. The results confirm a
relation between the biomarkers and the disorder in-
vestigated.
REFERENCES
Alkoot, F. M. and Alqallaf, A. K. (2016). Investigating ma-
chine learning techniques for the detection of autism.
Alter, M. D., Kharkar, R., Ramsey, K. E., Craig, D. W.,
Melmed, R. D., Grebe, T. A., Bay, R. C., Ober-
Reynolds, S., Kirwan, J., Jones, J. J., et al. (2011).
Autism and increased paternal age related changes in
global levels of gene expression regulation. PloS one,
6(2):e16715.
Ashley-Koch, A., Wolpert, C. M., Menold, M. M., Zaeem,
L., Basu, S., Donnelly, S. L., Ravan, S. A., Powell,
C. M., Qumsiyeh, M. B., Aylsworth, A., et al. (1999).
Genetic studies of autistic disorder and chromosome
7. Genomics, 61(3):227–236.
Azizi, Z. (2015). What is autism?
Baron-Cohen, S., Allen, J., and Gillberg, C. (1992). Can
autism be detected at 18 months?: The needle, the
haystack, and the chat.
Battaglia, A. (2008). The inv dup (15) or idic (15) syndrome
(tetrasomy 15q). Orphanet journal of rare diseases,
3(1):30.
Boulesteix, A.-L., Strobl, C., Augustin, T., and Daumer, M.
(2008). Evaluating microarray-based classifiers: an
overview.
Brans, J.-P. and Mareschal, B. (2005). Promethee methods.
In Multiple criteria decision analysis: state of the art
surveys, pages 163–186. Springer.
Ceylan, A. C., Citli, S., Erdem, H. B., Sahin, I., Arslan,
E. A., and Erdogan, M. (2018). Importance and usage
of chromosomal microarray analysis in diagnosing in-
tellectual disability, global developmental delay, and
autism; and discovering new loci for these disorders.
Cooper, G. M., Coe, B. P., Girirajan, S., Rosenfeld, J. A.,
Vu, T. H., Baker, C., Williams, C., Stalker, H., Hamid,
R., Hannig, V., et al. (2011). A copy number varia-
tion morbidity map of developmental delay. Nature
genetics, 43(9):838.
Cukier, H. N., Skaar, D. A., Rayner-Evans, M. Y., Konidari,
I., Whitehead, P. L., Jaworski, J. M., Cuccaro, M. L.,
Pericak-Vance, M. A., and Gilbert, J. R. (2009). Iden-
tification of chromosome 7 inversion breakpoints in
an autistic family narrows candidate region for autism
susceptibility. Autism Research, 2(5):258–266.
Guo, Z., Xin, Y., and Zhao, Y. (2017). Cancer classification
using entropy analysis in fractional fourier domain of
gene expression profile.
Klein-Tasman, B. P. and Mervis, C. B. (2018). Autism spec-
trum symptomatology among children with duplica-
tion 7q11. 23 syndrome. Journal of autism and devel-
opmental disorders, 48(6):1982–1994.
Nava, C., Keren, B., Mignot, C., Rastetter, A., Chantot-
Bastaraud, S., Faudet, A., Fonteneau, E., Amiet, C.,
Laurent, C., Jacquette, A., et al. (2014). Prospective
diagnostic analysis of copy number variants using snp
microarrays in individuals with autism spectrum dis-
orders.
Philippi, A., Roschmann, E., Tores, F., Lindenbaum, P.,
Benajou, A., Germain-Leclerc, L., Marcaillou, C.,
Fontaine, K., Vanpeene, M., Roy, S., et al. (2005).
Haplotypes in the gene encoding protein kinase c-
beta (prkcb1) on chromosome 16 are associated with
autism.
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R.,
Murtha, M. T., Moreno-De-Luca, D., Chu, S. H.,
Moreau, M. P., Gupta, A. R., Thomson, S. A., et al.
(2011). Multiple recurrent de novo cnvs, including
duplications of the 7q11. 23 williams syndrome re-
gion, are strongly associated with autism. Neuron,
70(5):863–885.
Scherer, S. W., Cheung, J., MacDonald, J. R., Osborne,
L. R., Nakabayashi, K., Herbrick, J.-A., Carson, A. R.,
Parker-Katiraee, L., Skaug, J., Khaja, R., et al. (2003).
Human chromosome 7: Dna sequence and biology.
Science, 300(5620):767–772.
Sieg, M. and Karl, G. (1990). Neurodevelopmental disor-
ders associated with chromosome 15. Jefferson Jour-
nal of Psychiatry, 8(2):5.
Varga, N.
´
A., Pentel
´
enyi, K., Balicza, P., G
´
ezsi, A.,
Rem
´
enyi, V., H
´
arsfalvi, V., Bencsik, R., Ill
´
es, A.,
Prekop, C., and Moln
´
ar, M. J. (2018). Mitochondrial
dysfunction and autism: comprehensive genetic anal-
yses of children with autism and mtdna deletion.
Wikipedia (2016). Autism.
https://en.wikipedia.org/wiki/Autism. Accessed
on 10.08.2018.
Yuen, R. K., Merico, D., Bookman, M., Howe, J. L., Thiru-
vahindrapuram, B., Patel, R. V., Whitney, J., Deflaux,
N., Bingham, J., Wang, Z., et al. (2017). Whole
genome sequencing resource identifies 18 new candi-
date genes for autism spectrum disorder.
BIOINFORMATICS 2019 - 10th International Conference on Bioinformatics Models, Methods and Algorithms
208