methods being combined and extended to gain inte-
resting insights into emotional social interaction.
REFERENCES
Atluri, G., Steinbach, M., Lim, K., MacDonald, A., and Ku-
mar, V. (2014). Discovering the longest set of distinct
maximal correlated intervals in time series data.
Baltru
ˇ
saitis, T., Mahmoud, M., and Robinson, P. (2015).
Cross-dataset learning and person-specific normalisa-
tion for automatic action unit detection. In Automa-
tic Face and Gesture Recognition (FG), 2015 11th
IEEE International Conference and Workshops on,
volume 6, pages 1–6. IEEE.
Baltrusaitis, T., Zadeh, A., Lim, Y. C., and Morency, L.-P.
(2018). Openface 2.0: Facial behavior analysis tool-
kit. In Automatic Face & Gesture Recognition (FG
2018), 2018 13th IEEE International Conference on,
pages 59–66. IEEE.
Benjamini, Y. and Hochberg, Y. (1995). Controlling the
false discovery rate: a practical and powerful appro-
ach to multiple testing. Journal of the royal statistical
society. Series B (Methodological), pages 289–300.
Bousmalis, K., Mehu, M., and Pantic, M. (2013). Towards
the automatic detection of spontaneous agreement and
disagreement based on nonverbal behaviour: A survey
of related cues, databases, and tools. Image and Vision
Computing, 31(2):203–221.
Burgoon, J. K., Guerrero, L. K., and Floyd, K. (2016). Non-
verbal communication. Routledge.
Cohn, J. F., Ambadar, Z., and Ekman, P. (2007). Observer-
based measurement of facial expression with the fa-
cial action coding system. The handbook of emotion
elicitation and assessment, pages 203–221.
Ding, M., Chen, Y., and Bressler, S. L. (2006). Granger cau-
sality: basic theory and application to neuroscience.
Handbook of time series analysis: recent theoretical
developments and applications, pages 437–460.
Ekman, P. (1992). An argument for basic emotions. Cogni-
tion & emotion, 6(3-4):169–200.
Ekman, P. (2002). Facial action coding system (facs). A
human face.
Ekman, P. and Friesen, W. (1978). Facial action coding
system: A technique for the measurement of facial
action. Manual for the Facial Action Coding System.
Ekman, P. and Rosenberg, E. L. (1997). What the face
reveals: Basic and applied studies of spontaneous
expression using the Facial Action Coding System
(FACS). Oxford University Press, USA.
El Kaliouby, R. and Robinson, P. (2005). Real-time infe-
rence of complex mental states from facial expressi-
ons and head gestures. In Real-time vision for human-
computer interaction, pages 181–200. Springer.
Granger, C. (1980). Testing for causality: A personal vie-
wpoint. Journal of Economic Dynamics and Control,
2:329 – 352.
Granger, C. W., Huangb, B.-N., and Yang, C.-W. (2000). A
bivariate causality between stock prices and exchange
rates: evidence from recent asianflu. The Quarterly
Review of Economics and Finance, 40(3):337–354.
Jain, A., Bansal, R., Kumar, A., and Singh, K. (2015). A
comparative study of visual and auditory reaction ti-
mes on the basis of gender and physical activity levels
of medical first year students. International Journal
of Applied and Basic Medical Research, 5(2):124.
Kalimeri, K., Lepri, B., Aran, O., Jayagopi, D. B., Gatica-
Perez, D., and Pianesi, F. (2012). Modeling domi-
nance effects on nonverbal behaviors using granger
causality. In Proceedings of the 14th ACM internatio-
nal conference on Multimodal interaction, pages 23–
26. ACM.
Kalimeri, K., Lepri, B., Kim, T., Pianesi, F., and Pentland,
A. S. (2011). Automatic modeling of dominance ef-
fects using granger causality. In International Works-
hop on Human Behavior Understanding, pages 124–
133. Springer.
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H.,
Hawk, S. T., and Van Knippenberg, A. (2010). Pre-
sentation and validation of the radboud faces database.
Cognition and emotion, 24(8):1377–1388.
Li, Z., Zheng, G., Agarwal, A., Xue, L., and Lauvaux, T.
(2017). Discovery of causal time intervals. In Procee-
dings of the 2017 SIAM International Conference on
Data Mining, pages 804–812. SIAM.
Matsuyama, Y., Bhardwaj, A., Zhao, R., Romeo, O., Akoju,
S., and Cassell, J. (2016). Socially-aware animated
intelligent personal assistant agent. In Proceedings of
the 17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue, pages 224–227.
Schneider, D., Glaser, M., and Senju, A. (2017). Au-
tism spectrum disorder. In V. Zeigler-Hill, T.K. Shac-
kelford (Eds.), Encyclopedia of Personality and Indi-
vidual Differences. Springer International Publishing
AG.
Schulze, P. M. (2004). Granger-kausalit
¨
atspr
¨
ufung: Eine
anwendungsorientierte darstellung. Technical report,
Arbeitspapier/Institut f
¨
ur Statistik und
¨
Okonometrie,
STATOEK.
Sheerman-Chase, T., Ong, E.-J., and Bowden, R. (2009).
Feature selection of facial displays for detection of
non verbal communication in natural conversation. In
Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on, pages 1985–
1992. IEEE.
Wegrzyn, M., Vogt, M., Kireclioglu, B., Schneider, J., and
Kissler, J. (2017). Mapping the emotional face. how
individual face parts contribute to successful emotion
recognition. PloS one, 12(5):e0177239.
Zhang, D. D., Lee, H. F., Wang, C., Li, B., Pei, Q., Zhang,
J., and An, Y. (2011). The causality analysis of climate
change and large-scale human crisis. Proceedings of
the National Academy of Sciences, page 201104268.
Causal Inference in Nonverbal Dyadic Communication with Relevant Interval Selection and Granger Causality
497