REFERENCES
Ammor, O., Lachkar, A., Slaoui, K., and Rais, N. (2008).
Optimal fuzzy clustering in overlapping clusters. In-
ternational Arab Journal of Information Technology
(IAJIT), 5(4).
Ardekani, B. A., Toshikazu, I., Bachman, A., and Szeszko,
P. R. (2012). Multi-atlas corpus callosum segmenta-
tion with adaptive atlas selection.
Barhoumi, W., Zagrouba, E., Damiani, E., Howlett, R., and
Jain, L. (2002). Boundaries detection based on poly-
gonal approximation by genetic algorithms. Frontiers
in Artificial Intelligence and Applications. New York:
Springer, pages 1529–33.
Choi, M.-H., Lee, S.-J., Yang, J.-W., Kim, J.-H., Choi, J.-S.,
Park, J.-Y., Jun, J.-H., Tack, G.-R., Lee, B.-Y., Kim,
H.-J., et al. (2010). Difference between smokers and
non-smokers in the corpus callosum volume. Neuros-
cience letters, 485(1):71–73.
Choo, A. L., Chang, S.-E., Zengin-Bolatkale, H., Ambrose,
N. G., and Loucks, T. M. (2012). Corpus callosum
morphology in children who stutter. Journal of com-
munication disorders, 45(4):279–289.
Cover, G., Herrera, W., Bento, M. P., Appenzeller, S., and
Rittner, L. (2018). Computational methods for corpus
callosum segmentation on mri: A systematic literature
review. Computer methods and programs in biomedi-
cine, 154:25–35.
Demirhan, A., T
¨
or
¨
u, M., and G
¨
uler, I. (2015). Segmentation
of tumor and edema along with healthy tissues of brain
using wavelets and neural networks. IEEE journal of
biomedical and health informatics, 19(4):1451–1458.
Divya, Manasa, M. and Vishnu, Priya, T. (2014). A hybrid
technique for the automated segmentation of corpus
callosum in midsagittal brain mri. Journal of Engi-
neering Research and Applications, 4(8):1–4.
Farhangi, M. M., Frigui, H., Bert, R., and Amini, A. A.
(2016). Incorporating shape prior into active contours
with a sparse linear combination of training shapes:
Application to corpus callosum segmentation. pages
6449–6452.
Ganjavi, H., Lewis, J. D., Bellec, P., MacDonald, P. A., Wa-
ber, D. P., Evans, A. C., Karama, S., Group, B. D. C.,
et al. (2011). Negative associations between corpus
callosum midsagittal area and iq in a representative
sample of healthy children and adolescents. PLoS
One, 6(5):e19698.
Georgiadis, P., Cavouras, D., Kalatzis, I., Daskalakis, A.,
Kagadis, G. C., Sifaki, K., Malamas, M., Nikifori-
dis, G., and Solomou, E. (2008). Improving brain
tumor characterization on mri by probabilistic neural
networks and non-linear transformation of textural fe-
atures. Computer methods and programs in biomedi-
cine, 89(1):24–32.
˙
Ic¸er, S. (2013). Automatic segmentation of corpus collasum
using gaussian mixture modeling and fuzzy c means
methods. Computer methods and programs in biome-
dicine, 112(1):38–46.
Kesareva, E. (2017). An algorithm for estimation an aniso-
tropic diffusion filter parameter. pages 682–685.
Lainhart, J. E., Ozonoff, S., Coon, H., Krasny, L., Dinh, E.,
Nice, J., and McMahon, W. (2002). Autism, regres-
sion, and the broader autism phenotype. American
Journal of Medical Genetics, 113(3):231–237.
Li, Y., Wang, H., Ahmed, N., and Mandal, M. (2017). Auto-
mated segmentation of corpus callosum in midsagittal
brain mris. ICTACT JOURNAL ON IMAGE AND VI-
DEO PROCESSING, 8(1):1554–1565.
Lyra, K. P., Chaim, K. T., Leite, C. C., Park, E. J., Andrade,
C. S., Passarelli, V., Val
´
erio, R. M., Jorge, C. L., Cas-
tro, L. H., and Otaduy, M. C. (2017). Corpus callosum
diffusion abnormalities in refractory epilepsy associ-
ated with hippocampal sclerosis. Epilepsy research,
137:112–118.
Palma, C. A., Cappabianco, F. A., Ide, J. S., and Miranda,
P. A. (2014). Anisotropic diffusion filtering operation
and limitations-magnetic resonance imaging evalua-
tion. IFAC Proceedings Volumes, 47(3):3887–3892.
Park, H.-J., Kim, J. J., Lee, S.-K., Seok, J. H., Chun, J.,
Kim, D. I., and Lee, J. D. (2008). Corpus callosal
connection mapping using cortical gray matter parcel-
lation and dt-mri. Human brain mapping, 29(5):503–
516.
Perona, P. and Malik, J. (1990). Scale-space and edge
detection using anisotropic diffusion. IEEE Tran-
sactions on pattern analysis and machine intelligence,
12(7):629–639.
Prigge, M. B., Lange, N., Bigler, E. D., Merkley, T. L.,
Neeley, E. S., Abildskov, T. J., Froehlich, A. L., Niel-
sen, J. A., Cooperrider, J. R., Cariello, A. N., et al.
(2013). Corpus callosum area in children and adults
with autism. Research in autism spectrum disorders,
7(2):221–234.
Shree, N. V. and Kumar, T. (2018). Identification and clas-
sification of brain tumor mri images with feature ex-
traction using dwt and probabilistic neural network.
Brain informatics, 5(1):23–30.
Tang, L. Y., Brosch, T., Liu, X., Yoo, Y., Traboulsee, A.,
Li, D., and Tam, R. (2016). Corpus callosum segmen-
tation in brain mris via robust target-localization and
joint supervised feature extraction and prediction. pa-
ges 406–414.
Waxman, S. (2003). Lange clinical neuroanatomy. New
York: McGraw-Hill, 27nd edition.
Wong, T.-T., Kwan, S.-Y., Chang, K.-P., Hsiu-Mei, W.,
Yang, T.-F., Chen, Y.-S., and Yi-Yen, L. (2006). Cor-
pus callosotomy in children. Child’s Nervous System,
22(8):999–1011.
Zhang, G. P. (2000). Neural networks for classifica-
tion: a survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
30(4):451–462.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
552