other types of connectivity functions and evaluate it
with more general seed sets.
ACKNOWLEDGEMENTS
The authors would like to thank CNPEM, CAPES,
and the Serrapilheira Institute (Serra-1708-16161) for
the financial support. The authors would like to thank
Dr. Tannaz Pak for the images used in this paper, as
well as Prof. Alexandre X. Falc
˜
ao, Prof. Tiago J.
Carvalho, and Prof. H
´
elio Pedrini for the provided
insights and discussions.
REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2012). SLIC Superpixels Compared
to State-of-the-Art Superpixel Methods. IEEE Trans.
Pattern Anal. Mach. Intell., 34(11):2274–2282.
Alexandre, E. B., Chowdhury, A. S., Falc
˜
ao, A. X., and Mi-
randa, P. A. V. (2015). IFT-SLIC: A general frame-
work for superpixel generation based on simple linear
iterative clustering and image foresting transform. In
SIBGRAPI, Salvador, Brazil.
Ciesielski, K. C., Falc
˜
ao, A. X., and Miranda, P. A. V.
(2018). Path-value functions for which dijkstra’s al-
gorithm returns optimal mapping. J. Math. Imaging
Vis. Accepted.
Costa, G., Archilha, N. L., O’Dowd, F., and Vasconcelos,
G. (2017). Automation Solutions and Prototypes for
the X-Ray Tomography Beamline of Sirius, the New
Brazilian Synchrotron Light Source. In ICALEPCS,
pages 923–927, Barcelona, Spain. JACoW.
Dial, R. B. (1969). Algorithm 360: Shortest-path fo-
rest with topological ordering. Commun. ACM,
12(11):632–633.
Dijkstra, E. W. (1959). A note on two problems in connex-
ion with graphs. Numerische Mathematik, 1(1):269–
271.
Falc
˜
ao, A. X. and Bergo, F. P. G. (2004). Interactive Vo-
lume Segmentation With Differential Image Foresting
Transforms. IEEE Trans. Med. Imag., 23(9):1100–
1108.
Falc
˜
ao, A. X., Stolfi, J., and Lotufo, R. A. (2004). The
Image Foresting Transform: Theory, Algorithms, and
Applications. IEEE Trans. Pattern Anal. Mach. Intell.,
26(1):19–29.
Felzenszwalb, P. F. and Huttenlocher, D. P. (2004). Effi-
cient Graph-Based Image Segmentation. Int. J. Com-
put. Vis., 59(2):167–181.
Lotufo, R. A., Falc
˜
ao, A. X., and Zampirolli, F. A.
(2002). IFT-Watershed from gray-scale marker. In
SIBGRAPI, pages 146–152.
Machairas, V., Faessel, M., C
´
ardenas-Pe
˜
na, D., Chabardes,
T., Walter, T., and Decenci
`
ere, E. (2015). Waterpixels.
IEEE Trans. Image Process., 24(11):3707–3716.
Miranda, P. and Mansilla, L. (2013). Oriented image fo-
resting transform segmentation by seed competition.
IEEE Trans. Image Process., PP(99):1–1.
Miranda, P. A. V., Falc
˜
ao, A. X., and Spina, T. V. (2012).
Riverbed: A novel user-steered image segmentation
method based on optimum boundary tracking. IEEE
Trans. Image Process., 21(6):3042–3052.
Miranda, P. A. V. and Mansilla, L. A. C. (2014). Orien-
ted Image Foresting Transform Segmentation by Seed
Competition. IEEE Trans. Image Process., 23(1):389–
398.
Neubert, P. and Protzel, P. (2014). Compact watershed and
preemptive slic: On improving trade-offs of super-
pixel segmentation algorithms. In ICPR, pages 996–
1001, Stockholm, Sweden.
Papa, J. P., Falc
˜
ao, A. X., de Albuquerque, V. H. C., and Ta-
vares, J. M. R. (2012). Efficient supervised optimum-
path forest classification for large datasets. Pattern
Recognition, 45(1):512 – 520.
Rauber, P. E., Spina, T. V., Rezende, P., and Falc
˜
ao, A. X.
(2013). Interactive segmentation by image foresting
transform on superpixel graphs. In SIBGRAPI, Are-
quipa, Peru.
Rocha, L. M., Cappabianco, F. A. M., and Falc
˜
ao, A. X.
(2009). Data clustering as an optimum-path forest
problem with applications in image analysis. Int J.
Imaging Syst. Technol., 19(2):50–68.
Roerdink, J. and Meijster, A. (2000). The watershed trans-
form: Definitions, algorithms and parallelization stra-
tegies. Fund. inform., 41:187–228.
Stegmaier, J., Amat, F., Lemon, W. B., McDole, K.,
Wan, Y., Teodoro, G., Mikut, R., and Keller, P. J.
(2016). Real-time three-dimensional cell segmenta-
tion in large-scale microscopy data of developing em-
bryos. Dev. Cell, 36(2):225–240.
Stegmaier, J., Spina, T. V., Falc
˜
ao, A. X., Bartschat, A., Mi-
kut, R., Meyerowitz, E., and Cunha, A. (2018). Cell
segmentation in 3D microscopy images using super-
voxel merge-forests with CNN-based hypothesis se-
lection. In ISBI, Washington, USA.
Vargas-Mu
˜
noz, J. E., Chowdhury, A. S., Barreto-Alexandre,
E., Galv
˜
ao, F. L., Miranda, P. A. V., and Falc
˜
ao, A. X.
(2018). An iterative spanning forest framework for
superpixel segmentation. CoRR, abs/1801.10041.
Wang, L., Li, D., and Huang, S. (2016). An improved paral-
lel fuzzy connected image segmentation method based
on cuda. BioMed. Eng. OnLine, 15(1):56.
Zhuge, Y., Ciesielski, K. C., Udupa, J. K., and Miller,
R. W. (2012). GPU-based relative fuzzy connected-
ness image segmentation. Med. Phys., 40(1):011903.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
404