local descriptors. Computers & Electrical Engineer-
ing, 70:525–537.
Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf:
Speeded up robust features. In Computer vision–
ECCV 2006, pages 404–417. Springer.
Ben-Hamadou, A ., Soussen, C., Daul, C., Blondel, W., and
Wolf, D. (2013). Flexible calibration of st ructured-
light systems projecting point patterns. Computer Vi-
sion and Image Understanding, 117(10):1468–1481.
Boutellaa, E., Hadid, A., Bengherabi, M., and Ait-Aoudia,
S. (2015). On the use of kinect depth data for identity,
gender and ethnicity classification from facial images.
Pattern Recognition Letters, 68:270–277.
Bowyer, K. W., Chang, K., and F lynn, P. (2006). A survey
of approaches and challenges in 3d and multi-modal
3d+ 2d face recognition. Computer vision and image
understanding, 101(1):1–15.
Ciaccio, C., Wen, L., and Guo, G. (2013). Face recogni-
tion robust to head pose changes based on the rgb-d
sensor. In Biometrics: Theory, Applications and Sy-
stems (BTAS), 2013 IEEE Sixth International Confe-
rence on, pages 1–6. IEEE.
Dai, X., Yin, S., Ouyang, P., Liu, L., and Wei, S. (2015).
A multi-modal 2d+ 3d face recognition method with a
novel local feature descriptor. In Applications of Com-
puter Vision (WACV), 2015 IEEE Winter Conference
on, pages 657–662. IEEE.
Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time
head pose estimation with random regression forests.
In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 617–624. IEEE.
Goswami, G., Vatsa, M., and Singh, R. (2014). Rgb-d face
recognition with texture and attribute features. Infor-
mation Forensics and Security, IEEE Transactions on,
9(10):1629–1640.
Grati, N., Ben-Hamadou, A., and Hammami, M. (2016). A
scalable patch-based approach for rgb-d face recogni-
tion. In International Conference on Neural Informa-
tion Processing, pages 286–293. Springer.
Hayat, M., Bennamoun, M., and El-Sallam, A. A. (2016).
An rgb–d based image set classification for r obust
face recognition from kinect data. Neurocomputing,
171:889–900.
Hsu, G.-S. J., Liu, Y.-L., Peng, H.-C., and Wu, P.-X. (2014).
Rgb-d-based face reconstruction and recognition. In-
formation Forensics and Security, IEEE Transactions
on, 9(12):2110–2118.
Huynh, T., Min, R., and Dugelay, J.-L. (2012). An efficient
lbp-based descriptor for facial depth images applied
to gender recognition using rgb-d face data. In Com-
puter vision-ACCV 2012 workshops, pages 133–145.
Springer.
Kaashki, N. N. and Safabakhsh, R. (2018). Rgb-d face re-
cognition under various conditions via 3d constrained
local model. Journal of Visual Communication and
Image Representation, 52:66–85.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
Li, B. Y., Mian, A., Liu, W., and Krishna, A. (2013). Using
kinect for face recognition under varying poses, ex-
pressions, illumination and disguise. In Applications
of Computer Vision (WACV), 2013 IEEE Workshop
on, pages 186–192. IEEE.
Mairal, J., Bach, F., Ponce, J., and Sapiro, G. (2010). Online
learning for matrix factorization and sparse coding.
The Journal of Machine Learning Research, 11:19–
60.
Rekik, A., Ben-Hamadou, A., and Mahdi, W. (2015a). Hu-
man Machine Interaction via Visual Speech Spotting.
In Advanced Concepts for Intelligent Vision Systems,
number 9386 in Lecture Notes in Computer Science,
pages 566–574. Springer International Publishing.
Rekik, A., Ben-Hamadou, A., and Mahdi, W. (2015b). Uni-
fied System for Visual Speech Recognition and Spea-
ker Identification. In Advanced Concepts for Intelli-
gent Vision Systems, number 9386 in Lecture Notes in
Computer Science, pages 381–390. Springer Interna-
tional Publishing.
Rekik, A., Ben-Hamadou, A., and Mahdi, W. (2016).
An adaptive approach for lip-reading using image
and depth data. Multimedia Tools and Applications,
75(14):8609–8636.
Sang, G., Li, J., and Zhao, Q. (2016). Pose-invariant face
recognition via rgb-d images. Computational intelli-
gence and neuroscience, 2016:13.
Schroff, F., Kalenichenko, D ., and Philbin, J. (2015). Fa-
cenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 815–
823.
Szegedy, C., Toshev, A., and Erhan, D. (2013). Deep neural
networks for object detection. In Advances in neural
information processing systems, pages 2553–2561.
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., and Ma,
Y. (2009). Robust face recognition via sparse repre-
sentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 31(2):210–227.
Wu, D., Zhu, F., and Shao, L. (2012). One shot learning
gesture recognition from rgbd images. In Computer
Vision and Pattern Recognition Workshops (CVPRW),
2012 IEEE Computer Society Conference on, pages
7–12. IEEE.
Zhu, X. and Ramanan, D. (2012). Face detection, pose es-
timation, and landmark localization in the wild. In
Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 2879–2886. IEEE.