Mean Shift bandwidth h. With our method, proces-
sing a 2000 ×1500 linear RGB image takes about
1.32 seconds with unoptimized MATLAB code run-
ning in a CPU Intel i7 2.5 GHz. The method can be
adapted to other color spaces (e.g. Lab) without any
performance drop.
REFERENCES
Barnard, K., Cardei, V., and Funt, B. (2002). A comparison
of computational color constancy algorithms. i: Met-
hodology and experiments with synthesized data. TIP,
11(9):972–984.
Barron, J. T. (2015). Convolutional color constancy. In
ICCV.
Barron, J. T. and Tsai, Y.-T. (2017). Fast fourier color con-
stancy. In CVPR.
Brainard, D. H. and Wandell, B. A. (1986). Analysis of the
retinex theory of color vision. JOSA A, 3(10):1651–
1661.
Buchsbaum, G. (1980). A spatial processor model for object
colour perception. Journal of the Franklin Institute,
310(1):1–26.
Chakrabarti, A. (2015). Color constancy by learning to pre-
dict chromaticity from luminance. In NIPS.
Chakrabarti, A., Hirakawa, K., and Zickler, T. (2012). Co-
lor constancy with spatio-spectral statistics. TPAMI,
34(8):1509–1519.
Cheng, D., Kamel, A., Price, B., Cohen, S., and Brown,
M. S. (2016). Two illuminant estimation and user cor-
rection preference. In CVPR.
Cheng, D., Prasad, D. K., and Brown, M. S. (2014). Illu-
minant estimation for color constancy: why spatial-
domain methods work and the role of the color distri-
bution. JOSA A, 31(5):1049–1058.
Cheng, D., Price, B., Cohen, S., and Brown, M. S. (2015).
Effective learning-based illuminant estimation using
simple features. In CVPR.
Comaniciu, D. and Meer, P. (2002). Mean shift: A ro-
bust approach toward feature space analysis. TPAMI,
24(5):603–619.
Finlayson, G. D. (2013). Corrected-moment illuminant es-
timation. In ICCV, pages 1904–1911.
Finlayson, G. D. and Schaefer, G. (2001a). Convex and
non-convex illuminant constraints for dichromatic co-
lour constancy. In CVPR, volume 1, pages I–I. IEEE.
Finlayson, G. D. and Schaefer, G. (2001b). Solving for
colour constancy using a constrained dichromatic re-
flection model. IJCV, 42(3):127–144.
Finlayson, G. D. and Trezzi, E. (2004). Shades of gray
and colour constancy. In Color Imaging Conference
(CIC).
Foster, D. H. (2011). Color constancy. Vision research,
51(7):674–700.
Fukunaga and Hostetler (1975). The estimation of the gra-
dient of a density function, with applications in pattern
recognition. IEEE Transactions on Information The-
ory, 21:32–40.
Gao, S., Han, W., Yang, K., Li, C., and Li, Y. (2014). Fef-
ficient color constancy with local surface reflectance
statistics. In ECCV.
Gao, S.-B., Zhang, M., Li, C.-Y., and Li, Y.-J. (2017). Im-
proving color constancy by discounting the variation
of camera spectral sensitivity. JOSA A, 34(8):1448–
1462.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In CVPR.
Geusebroek, J.-M., Van den Boomgaard, R., Smeulders,
A. W. M., and Geerts, H. (2001). Color invariance.
TPAMI, 23(12):1338–1350.
Gijsenij, A. (1999). Color constancy research website:
http://colorconstancy.com.
Gijsenij, A. and Gevers, T. (2011). Color constancy using
natural image statistics and scene semantics. TPAMI,
33(4):687–698.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2010).
Generalized gamut mapping using image derivative
structures for color constancy. IJCV, 86(2-3):127–
139.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011). Com-
putational color constancy: Survey and experiments.
TIP, 20(9):2475–2489.
Hu, Y., Wang, B., and Lin, S. (2017). Fully convolutional
color constancy with confidence-weighted pooling. In
CVPR.
Joze, H. R. V. and Drew, M. S. (2014). Exemplar-based
color constancy and multiple illumination. TPAMI,
36(5):860–873.
Qian, Y., Chen, K., K
¨
am
¨
ar
¨
ainen, J., Nikkanen, J., and Ma-
tas, J. (2016). Deep structured-output regression lear-
ning for computational color constancy. In ICPR.
Qian, Y., Chen, K., K
¨
am
¨
ar
¨
ainen, J., Nikkanen, J., and Ma-
tas, J. (2017). Recurrent color constancy. In ICCV.
Shi, L. and Funt, B. (2010). Re-processed version of the
gehler color constancy dataset of 568 images. acces-
sed from http://www.cs.sfu.ca/ colour/data/.
Shi, W., Loy, C. C., and Tang, X. (2016). Deep specialized
network for illumination estimation. In ECCV.
Tominaga, S. (1996). Multichannel vision system for esti-
mating surface and illumination functions. JOSA A,
13(11):2163–2173.
Van De Weijer, J., Gevers, T., and Gijsenij, A. (2007). Edge-
based color constancy. TIP, 16(9):2207–2214.
von Kries, J. (1970). Influence of adaptation on the ef-
fects produced by luminous stimuli. Source of Color
Science, pages 109–119.
Woo, S.-M., Lee, S.-h., Yoo, J.-S., and Kim, J.-O. (2018).
Improving color constancy in an ambient light en-
vironment using the phong reflection model. TIP,
27(4):1862–1877.
Xiong, W., Funt, B., Shi, L., Kim, S.-S., Kang, B.-H., Lee,
S.-D., and Kim, C.-Y. (2007). Automatic white ba-
lancing via gray surface identification. In Color and
Imaging Conference (CIC).
Yang, K.-F., Gao, S.-B., and Li, Y.-J. (2015). Efficient
illuminant estimation for color constancy using grey
pixels. In CVPR.
Revisiting Gray Pixel for Statistical Illumination Estimation
45