REFERENCES
Alcantarilla, P. F., Stent, S., Ros, G., Arroyo, R., and
Gherardi, R. (2018). Street-view change detection
with deconvolutional networks. Autonomous Robots,
42(7):1301–1322.
Bruzzone, L. and Prieto, D. F. (2000). Automatic analy-
sis of the difference image for unsupervised change
detection. IEEE Transactions on Geoscience and Re-
mote sensing, 38(3):1171–1182.
Chen, L.-C., Papandreou, G., Schroff, F., and Adam,
H. (2017). Rethinking atrous convolution for
semantic image segmentation. arXiv preprint
arXiv:1706.05587.
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., and
Adam, H. (2018). Encoder-decoder with atrous se-
parable convolution for semantic image segmentation.
arXiv preprint arXiv:1802.02611.
Gong, M., Zhao, J., Liu, J., Miao, Q., and Jiao, L. (2016).
Change detection in synthetic aperture radar images
based on deep neural networks. IEEE transactions
on neural networks and learning systems, 27(1):125–
138.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resi-
dual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Li, Y., Martinis, S., Plank, S., and Ludwig, R. (2018). An
automatic change detection approach for rapid flood
mapping in sentinel-1 sar data. International Jour-
nal of Applied Earth Observation and Geoinforma-
tion, 73:123–135.
Lin, T.-Y., Doll
´
ar, P., Girshick, R. B., He, K., Hariharan, B.,
and Belongie, S. J. (2017). Feature pyramid networks
for object detection. In CVPR, volume 1, page 4.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C.-Y., and Berg, A. C. (2016). Ssd: Single shot mul-
tibox detector. In European conference on computer
vision, pages 21–37. Springer.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 3431–3440.
Radke, R. J., Andra, S., Al-Kofahi, O., and Roysam, B.
(2005). Image change detection algorithms: a syste-
matic survey. IEEE transactions on image processing,
14(3):294–307.
Redmon, J. and Farhadi, A. (2017). Yolo9000: better, faster,
stronger. arXiv preprint.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Sakurada, K. and Okatani, T. (2015). Change detection
from a street image pair using cnn features and su-
perpixel segmentation. In BMVC, pages 61–1.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Singh, A. (1989). Review article digital change detection
techniques using remotely-sensed data. International
journal of remote sensing, 10(6):989–1003.
Tewkesbury, A. P., Comber, A. J., Tate, N. J., Lamb, A., and
Fisher, P. F. (2015). A critical synthesis of remotely
sensed optical image change detection techniques. Re-
mote Sensing of Environment, 160:1–14.
Yu, F. and Koltun, V. (2015). Multi-scale context ag-
gregation by dilated convolutions. arXiv preprint
arXiv:1511.07122.
Zagoruyko, S. and Komodakis, N. (2015). Learning to com-
pare image patches via convolutional neural networks.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4353–4361.
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017). Py-
ramid scene parsing network. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages
2881–2890.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
532