Table 7: Compression Ratio.
a)
Method\Motion 09/06 13/29 15/04 17/08 17/10 85/12 86/02 86/08
Liu and McMillan (2006) N/A 1:55 N/A N/A N/A 1:18 1:53 1:56
Tournier et al. (2009) 1:18 N/A 1:69 1:182 1:61 1:97 N/A N/A
Ours (motion vector only) 1:19 1:33 1:63 1:34 1:33 1:34 1:34 1:29
Table 8: Distortion Rate (%).
b)
Method\Motion 09/06 13/29 15/04 17/08 17/10 85/12 86/02 86/08
Liu and McMillan (2006) N/A 5.1 N/A N/A N/A 7.1 5.1 5.4
Tournier et al. (2009) 0.36 N/A 1.55 0.049 0.49 0.56 N/A N/A
Ours 1.11 0.30 0.21 0.39 0.23 0.34 0.38 0.40
The comparison between our method and other approaches. Note that we only used vector size for calculating compression
ratio, because our method the ONB functions are shared for all motions. In this table, lower than 1e-5 values are not saved,
and 6 basis functions were used.
only 1D functions. Theoretically, it would be possi-
ble to apply the FPCA directly to n-dimensional char-
acter animation and the per component optimizations
would not be necessary. Moreover, FPCA assumes
that the input functions are smooth, and also inter-
nally smooth the resulting ONB functions. As a side
effect, this could hide oscillations. Another limitation
is that the FPCA is always lossy due to numerical er-
rors in the computation.
ACKNOWLEDGEMENTS
The authors acknowledge the support of the OP
VVV MEYS funded project CZ.02.1.01/0.0/0.0/16
019/0000765 Research Center for Informatics.
REFERENCES
Arikan, O. (2006). Compression of motion capture
databases. ACM Trans. Graph., 25(3):890–897.
Barbi
ˇ
c, J., Safonova, A., Pan, J.-Y., Faloutsos, C., Hodgins,
J. K., and Pollard, N. S. (2004). Segmenting motion
capture data into distinct behaviors. In Proceedings of
Graphics Interface 2004, pages 185–194.
Beaudoin, P., Coros, S., van de Panne, M., and Poulin, P.
(2008). Motion-motif graphs. In Proceedings SCA,
pages 117–126.
Chao, M.-W., Lin, C.-H., Assa, J., and Lee, T.-Y. (2012).
Human motion retrieval from hand-drawn sketch.
IEEE TVCG, 18(5):729–740.
Coffey, N., Harrison, A., Donoghue, O., and Hayes, K.
(2011). Common functional principal components
analysis: A new approach to analyzing human move-
ment data. Human Movement Science, 30(6):1144 –
1166.
Courrieu, P. (2008). Fast computation of moore-penrose
inverse matrices. CoRR, abs/0804.4809.
Du, H., Hosseini, S., Manns, M., Herrmann, E., and Fis-
cher, K. (2016). Scaled functional principal compo-
nent analysis for human motion synthesis. In Pro-
ceedings of the Intl. Conf. on Motion in Games, pages
139–144.
Heck, R. and Gleicher, M. (2007). Parametric motion
graphs. In Proceedings of the I3D.
Ikemoto, L., Arikan, O., and Forsyth, D. (2006). Knowing
when to put your foot down. In Proceedings of the
I3D, pages 49–53.
Ikemoto, L., Arikan, O., and Forsyth, D. (2009). Generaliz-
ing motion edits with gaussian processes. ACM Trans.
Graph., 28(1):1:1–1:12.
Karni, Z. and Gotsman, C. (2004). Compression of soft-
body animation sequences. Computers & Graphics,
28(1):25 – 34.
Kovar, L. and Gleicher, M. (2004). Automated extraction
and parameterization of motions in large data sets.
ACM Trans. Graph., 23(3):559–568.
Kovar, L., Gleicher, M., and Pighin, F. (2002a). Motion
graphs. ACM Trans. Graph., 21(3):473–482.
Kovar, L., Schreiner, J., and Gleicher, M. (2002b). Foot-
skate cleanup for motion capture editing. In Proceed-
ings of the SCA, pages 97–104.
Lai, Y.-C., Chenney, S., and Fan, S. (2005). Group motion
graphs. In Proceedings of the SCA, pages 281–290.
Lau, M., Bar-Joseph, Z., and Kuffner, J. (2009). Modeling
spatial and temporal variation in motion data. ACM
Trans. Graph., 28(5):171:1–171:10.
Lee, J. and Shin, S. Y. (1999). A hierarchical approach to
interactive motion editing for human-like figures. In
Proc. of the Annual Conf. on Comp. Graph. and Inter-
active Techniques, pages 39–48.
Lee, Y., Wampler, K., Bernstein, G., Popovi
´
c, J., and
Popovi
´
c, Z. (2010). Motion fields for interactive char-
acter locomotion. ACM Trans. Graph., 29(6):138:1–
138:8.
Levine, S., Wang, J. M., Haraux, A., Popovi
´
c, Z., and
Koltun, V. (2012). Continuous character control with
low-dimensional embeddings. ACM Trans. Graph.,
31(4):28:1–28:10.
Liu, G. and McMillan, L. (2006). Segment-based human
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
120