REFERENCES
Abe, T., Ikemura, T., Sugahara, J., Kanai, A., Ohara, Y.,
Uehara, H., Kinouchi, M., Kanaya, S., Yamada, Y.,
Muto, A., and Inokuchi, H. (2010). tRNADB-CE
2011: tRNA gene database curated manually by ex-
perts. Nucleic Acids Research, 39(Database):D210–
D213.
Azimov, R. and Grigorev, S. (2018). Context-free path
querying by matrix multiplication. In Proceedings
of the 1st ACM SIGMOD Joint International Work-
shop on Graph Data Management Experiences & Sys-
tems (GRADES) and Network Data Analytics (NDA),
GRADES-NDA ’18, pages 5:1–5:10, New York, NY,
USA. ACM.
Browny, M., Underwoody, R. C., Mianx, I. S., and Haus-
sleryy, D. (1993). Stochastic context-free grammars
for modeling rna.
Chan, P. P. and Lowe, T. M. (2009). GtRNAdb: a database
of transfer RNA genes detected in genomic sequence.
Nucleic Acids Research, 37(Database):D93–D97.
Cohen, S. B. and Gildea, D. (2016). Parsing linear context-
free rewriting systems with fast matrix multiplication.
Computational Linguistics, 42(3):421–455.
DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M.,
Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P.,
and Andersen, G. L. (2006). Greengenes, a chimera-
checked 16S rRNA gene database and workbench
compatible with ARB. Appl. Environ. Microbiol.,
72(7):5069–5072.
Devi, K. K. and Arumugam, S. (2017). Probabilistic con-
junctive grammar. In Theoretical Computer Science
and Discrete Mathematics, pages 119–127. Springer
International Publishing.
Dowell, R. D. and Eddy, S. R. (2004). Evaluation of several
lightweight stochastic context-free grammars for rna
secondary structure prediction. BMC bioinformatics,
5(1):71.
Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G.
(1998). Biological sequence analysis: probabilistic
models of proteins and nucleic acids. Cambridge uni-
versity press.
Dyrka, W. and Nebel, J.-C. (2008). A stochastic context
free grammar based framework for analysis of protein
sequences. BMC Bioinformatics, 10:323 – 323.
Geer, L. Y., Marchler-Bauer, A., Geer, R. C., Han, L., He,
J., He, S., Liu, C., Shi, W., and Bryant, S. H. (2010).
The NCBI BioSystems database. Nucleic Acids Res.,
38(Database issue):D492–496.
Higashi, S., Hungria, M., and Brunetto, M. (2009). Bac-
teria classification based on 16s ribosomal gene using
artificial neural networks. In Proceedings of the 8th
WSEAS International Conference on Computational
intelligence, man-machine systems and cybernetics,
pages 86–91.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.
Jim
´
enez-Monta
˜
no, M. A. (1984). On the syntactic struc-
ture of protein sequences and the concept of gram-
mar complexity. Bulletin of Mathematical Biology,
46(4):641–659.
Kim, M. and Smaragdis, P. (2016). Bitwise neural net-
works. CoRR, abs/1601.06071.
Knudsen, B. and Hein, J. (1999). Rna secondary structure
prediction using stochastic context-free grammars and
evolutionary history. Bioinformatics (Oxford, Eng-
land), 15(6):446–454.
Knudsen, B. and Hein, J. (2003). Pfold: Rna sec-
ondary structure prediction using stochastic context-
free grammars. Nucleic acids research, 31(13):3423–
3428.
Knudsen, M. (2005). Stochastic context-free grammars and
rna secondary structure prediction.
Liu, T. and Schmidt, B. (2005). Parallel RNA sec-
ondary structure prediction using stochastic context-
free grammars. Concurrency and Computation: Prac-
tice and Experience, 17(14):1669–1685.
Nawrocki, E. P. and Eddy, S. R. (2013). Infernal 1.1: 100-
fold faster RNA homology searches. Bioinformatics,
29(22):2933–2935.
Okhotin, A. (2001). Conjunctive grammars. J. Autom.
Lang. Comb., 6(4):519–535.
Okhotin, A. (2014). Parsing by matrix multiplication gen-
eralized to boolean grammars. Theoretical Computer
Science, 516:101 – 120.
Riechert, M., H
¨
oner zu Siederdissen, C., and Stadler, P. F.
(2016). Algebraic dynamic programming for mul-
tiple context-free grammars. Theor. Comput. Sci.,
639(C):91–109.
Rivas, E. and Eddy, S. R. (2000). The language of rna: a
formal grammar that includes pseudoknots. Bioinfor-
matics, 16(4):334–340.
Sciacca, E., Spinella, S., Ienco, D., and Giannini, P. (2011).
Annotated stochastic context free grammars for anal-
ysis and synthesis of proteins. In EvoBio.
Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991).
On multiple context-free grammars. Theoretical Com-
puter Science, 88(2):191 – 229.
Sherman, D. (2017). Humidor: Microbial community clas-
sification of the 16s gene by training cigar strings with
convolutional neural networks.
Thiemann, P. and Neubauer, M. (2008). Macros for context-
free grammars. In Proceedings of the 10th Inter-
national ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming, PPDP ’08,
pages 120–130, New York, NY, USA. ACM.
Valiant, L. G. (1975). General context-free recognition in
less than cubic time. J. Comput. Syst. Sci., 10(2):308–
315.
Younger, D. H. (1967). Recognition and parsing of context-
free languages in time n
3
. Information and Control,
10:189–208.
Yuan, C., Lei, J., Cole, J., and Sun, Y. (2015). Reconstruct-
ing 16s rrna genes in metagenomic data. Bioinformat-
ics, 31(12):i35–i43.
Zier-Vogel, R. and Domaratzki, M. (2013). Rna pseudoknot
prediction through stochastic conjunctive grammars.
Computability in Europe 2013. Informal Proceedings,
pages 80–89.
The Composition of Dense Neural Networks and Formal Grammars for Secondary Structure Analysis
241