Chollet, F. and others (2015) ‘Keras: Deep learning library
for theano and tensorflow’, URL: https://keras. io/k, 7,
p. 8.
Csapo, T. G. and Lulich, S. M. (2015) ‘Error analysis of
extracted tongue contours from 2D ultrasound
images’, Proceedings of the Annual Conference of the
International Speech Communication Association,
INTERSPEECH, 2015–Janua, pp. 2157–2161. doi:
10.1111/j.0956-7976.2004.00672.x.
Denby, B. et al. (2010) ‘Silent speech interfaces’, Speech
Communication. Elsevier, 52(4), pp. 270–287.
Fabre, D. et al. (2015) ‘Tongue tracking in ultrasound
images using eigentongue decomposition and artificial
neural networks’, Proceedings of the Annual
Conference of the International Speech
Communication Association, INTERSPEECH, 2015–
Janua(2), pp. 2410–2414.
Fasel, I. and Berry, J. (2010) ‘Deep belief networks for
real-time extraction of tongue contours from
ultrasound during speech’, in Pattern Recognition
(ICPR), 2010 20th International Conference on, pp.
1493–1496. doi: 10.1109/ICPR.2010.369.
Geddes, D. T. and Sakalidis, V. S. (2016) ‘Ultrasound
imaging of breastfeeding—a window to the inside:
Methodology, normal appearances, and application’,
Journal of Human Lactation. SAGE Publications Sage
CA: Los Angeles, CA, 32(2), pp. 340–349.
Ghrenassia, S., Ménard, L. and Laporte, C. (2014)
‘Interactive segmentation of tongue contours in
ultrasound video sequences using quality maps’, in
Medical Imaging 2014: Image Processing, p. 903440.
Gick, B., Bernhardt, B., et al. (2008) ‘Ultrasound imaging
applications in second language acquisition’,
Phonology and second language acquisition. John
Benjamins Amsterdam, 36, pp. 315–328.
Gick, B., Bernhardt, B. M., et al. (2008) ‘Ultrasound
imging applications in second language acquisition’,
Phonology and Second Language Acquisition, (June),
pp. 309–322. doi: 10.1684/abc.2012.0768.
Hoopingarner, D. (2005) ‘SECOND LANGUAGE
SPEECH PERCEPTION AND PRODUCTION:
ACQUISITION OF PHONOLOGICAL
CONTRASTS IN JAPANESE’, Studies in Second
Language Acquisition. Cambridge University Press,
27(3), p. 494.
Hueber, T. (2013) ‘Ultraspeech-player: intuitive
visualization of ultrasound articulatory data for speech
therapy and pronunciation training.’, in
INTERSPEECH, pp. 752–753.
Jaumard-Hakoun, A., Xu, K., Leboullenger, C., et al.
(2016) ‘An articulatory-based singing voice synthesis
using tongue and lips imaging’, in ISCA Interspeech
2016, pp. 1467–1471.
Jaumard-Hakoun, A., Xu, K., Roussel-Ragot, P., et al.
(2016) ‘Tongue contour extraction from ultrasound
images based on deep neural network’, Proceedings of
the 18th International Congress of Phonetic Sciences
(ICPhS 2015). Available at:
http://arxiv.org/abs/1605.05912.
Ji, Y. et al. (2017) ‘Updating the silent speech challenge
benchmark with deep learning’, arXiv preprint
arXiv:1709.06818.
Kingma, D. P. and Ba, J. (2014) ‘Adam: A method for
stochastic optimization’, arXiv preprint
arXiv:1412.6980.
Laporte, C. and Ménard, L. (2015) ‘Robust tongue
tracking in ultrasound images: a multi-hypothesis
approach’, in Sixteenth Annual Conference of the
International Speech Communication Association.
Laporte, C. and Ménard, L. (2018) ‘Multi-hypothesis
tracking of the tongue surface in ultrasound video
recordings of normal and impaired speech’, Medical
image analysis. Elsevier, 44, pp. 98–114. doi:
10.1016/j.media.2017.12.003.
Lawson, E. et al. (2015) ‘Seeing Speech: an articulatory
web resource for the study of phonetics [website]’.
University of Glasgow.
Lee, S. A. S., Wrench, A. and Sancibrian, S. (2015) ‘How
To Get Started With Ultrasound Technology for
Treatment of Speech Sound Disorders’, SIG 5
Perspectives on Speech Science and Orofacial
Disorders. ASHA, 25(2), pp. 66–80.
Li, M., Kambhamettu, C. and Stone, M. (2005)
‘Automatic contour tracking in ultrasound images’,
Clinical Linguistics and Phonetics, 19(6–7), pp. 545–
554. doi: 10.1080/02699200500113616.
Litjens, G. et al. (2017) ‘A survey on deep learning in
medical image analysis’, Medical Image Analysis,
42(1995), pp. 60–88. doi:
10.1016/j.media.2017.07.005.
Long, J., Shelhamer, E. and Darrell, T. (2015) ‘Fully
convolutional networks for semantic segmentation’, in
Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 3431–3440.
Loosvelt, M., Villard, P.-F. and Berger, M.-O. (2014)
‘Using a biomechanical model for tongue tracking in
ultrasound images’, Biomedical Simulation, 8789, pp.
67–75. Available at:
http://link.springer.com/chapter/10.1007/978-3-319-
12057-7_8.
Ouni, S. (2014) ‘Tongue control and its implication in
pronunciation training’, Computer Assisted Language
Learning. Taylor & Francis, 27(5), pp. 439–453.
Preston, J. L. et al. (2014) ‘Ultrasound visual feedback
treatment and practice variability for residual speech
sound errors’, Journal of Speech, Language, and
Hearing Research. ASHA, 57(6), pp. 2102–2115.
Ronneberger, O., Fischer, P. and Brox, T. (2015) ‘U-net:
Convolutional networks for biomedical image
segmentation’, in International Conference on
Medical image computing and computer-assisted
intervention, pp. 234–241.
Stone, M. (2005) ‘A guide to analysing tongue motion
from ultrasound images’, Clinical Linguistics and
Phonetics, 19(6–7), pp. 455–501. doi:
10.1080/02699200500113558.
Tang, L., Bressmann, T. and Hamarneh, G. (2012)
‘Tongue contour tracking in dynamic ultrasound via
higher-order MRFs and efficient fusion moves’,