Andriluka, M., Pishchulin, L., Gehler, P., and Schiele, B.
(2014). 2d human pose estimation: New benchmark
and state of the art analysis. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition. IEEE.
Baptista, R., Antunes, M., Aouada, D., and Ottersten, B.
(2018). Anticipating suspicious actions using a small
dataset of action templates. In 13th International Joint
Conference on Computer Vision, Imaging and Com-
puter Graphics Theory and Applications (VISAPP).
Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero,
J., and Black, M. J. (2016). Keep it SMPL: Auto-
matic estimation of 3D human pose and shape from
a single image. In Computer Vision – ECCV 2016,
Lecture Notes in Computer Science. Springer Interna-
tional Publishing.
Dalal, N. and Triggs, B. (2005). Histograms of oriented gra-
dients for human detection. In 2005 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR05). IEEE.
Dalal, N., Triggs, B., and Schmid, C. (2006). Human de-
tection using oriented histograms of flow and appea-
rance. In Proceedings of the 9th European Conference
on Computer Vision - Volume Part II, ECCV’06, pages
428–441, Berlin, Heidelberg. Springer-Verlag.
Evangelidis, G., Singh, G., and Horaud, R. (2014). Skeletal
quads: Human action recognition using joint quadru-
ples. In Pattern Recognition (ICPR), 2014 22nd Inter-
national Conference on, pages 4513–4518. IEEE.
Fernando, B., Gavves, E., Oramas, J. M., Ghodrati, A., and
Tuytelaars, T. (2015). Modeling video evolution for
action recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 5378–5387.
Ghorbel, E., Boutteau, R., Bonnaert, J., Savatier, X., and
Lecoeuche, S. (2016). A fast and accurate motion des-
criptor for human action recognition applications. In
Pattern Recognition (ICPR), 2016 23rd International
Conference on, pages 919–924. IEEE.
Ghorbel, E., Boutteau, R., Boonaert, J., Savatier, X., and
Lecoeuche, S. (2018). Kinematic spline curves: A
temporal invariant descriptor for fast action recogni-
tion. Image and Vision Computing, 77:60–71.
Gupta, A., Martinez, J., Little, J. J., and Woodham, R. J.
(2014). 3d pose from motion for cross-view action re-
cognition via non-linear circulant temporal encoding.
In 2014 IEEE Conference on Computer Vision and
Pattern Recognition. IEEE.
Haque, A., Peng, B., Luo, Z., Alahi, A., Yeung, S., and
Fei-Fei, L. (2016). Towards viewpoint invariant 3d
human pose estimation. In European Conference on
Computer Vision, pages 160–177. Springer.
Hsu, Y.-P., Liu, C., Chen, T.-Y., and Fu, L.-C. (2016). On-
line view-invariant human action recognition using
rgb-d spatio-temporal matrix. Pattern recognition,
60:215–226.
Ionescu, C., Papava, D., Olaru, V., and Sminchisescu, C.
(2014). Human3.6m: Large scale datasets and pre-
dictive methods for 3d human sensing in natural envi-
ronments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 36(7):1325–1339.
Lea, C., Hager, G. D., and Vidal, R. (2015). An impro-
ved model for segmentation and recognition of fine-
grained activities with application to surgical training
tasks. In Applications of computer vision (WACV),
2015 IEEE winter conference on, pages 1123–1129.
IEEE.
Li, B., Camps, O. I., and Sznaier, M. (2012). Cross-view
activity recognition using hankelets. In Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, pages 1362–1369. IEEE.
Li, R. and Zickler, T. (2012). Discriminative virtual views
for cross-view action recognition. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Confe-
rence on, pages 2855–2862. IEEE.
Lv, F. and Nevatia, R. (2007). Single view human action
recognition using key pose matching and viterbi path
searching. In Computer Vision and Pattern Recogni-
tion, 2007. CVPR’07. IEEE Conference on, pages 1–
8. IEEE.
Mehta, D., Rhodin, H., Casas, D., Sotnychenko, O., Xu, W.,
and Theobalt, C. (2016). Monocular 3d human pose
estimation using transfer learning and improved CNN
supervision. CoRR, abs/1611.09813.
Mehta, D., Sridhar, S., Sotnychenko, O., Rhodin, H.,
Shafiei, M., Seidel, H.-P., Xu, W., Casas, D., and The-
obalt, C. (2017). Vnect: Real-time 3d human pose
estimation with a single rgb camera. volume 36.
Papadopoulos, K., Antunes, M., Aouada, D., and Ottersten,
B. (2017). Enhanced trajectory-based action recogni-
tion using human pose. In Image Processing (ICIP),
2017 IEEE International Conference on, pages 1807–
1811. IEEE.
Parameswaran, V. and Chellappa, R. (2006). View inva-
riance for human action recognition. International
Journal of Computer Vision, 66(1):83–101.
Pavlakos, G., Zhou, X., Derpanis, K. G., and Daniilidis,
K. (2017). Coarse-to-fine volumetric prediction for
single-image 3d human pose. In Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference
on, pages 1263–1272. IEEE.
Poppe, R. (2010). A survey on vision-based human action
recognition. Image and vision computing, 28(6):976–
990.
Presti, L. L. and Cascia, M. L. (2016). 3d skeleton-based
human action classification: A survey. Pattern Recog-
nition, 53:130–147.
Rahmani, H., Mahmood, A., Huynh, D., and Mian, A.
(2016). Histogram of oriented principal components
for cross-view action recognition. IEEE transacti-
ons on pattern analysis and machine intelligence,
38(12):2430–2443.
Rahmani, H., Mahmood, A., Huynh, D. Q., and Mian, A.
(2014). Hopc: Histogram of oriented principal com-
ponents of 3d pointclouds for action recognition. In
European conference on computer vision, pages 742–
757. Springer.
Rahmani, H. and Mian, A. (2015). Learning a non-linear
knowledge transfer model for cross-view action re-
cognition. In 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.
A View-invariant Framework for Fast Skeleton-based Action Recognition using a Single RGB Camera
581