(a) RN
(b) SMRN
(c) PMRN
Figure 7: 15 minutes horizon forecast for regional data
computed by RN, SMRN and PMRN. Left column: on
06/25/2016 at 17:35, right column: on 06/24/2016 at 07:45.
radar-based methodology. Journal of Atmospheric
and Oceanic Technology, 10:785.
Germann, U. and Zawadzki, I. (2002). Scale-dependence
of the predictability of precipitation from continen-
tal radar images. part i: Description of the metho-
dology. Monthly Weather Review - MON WEATHER
REV, 130.
H
´
eas, P., Memin, E., Papadakis, N., and Szantai, A. (2007).
Layered estimation of atmospheric mesoscale dyn-
amics from satellite imagery. IEEE Transactions
on Geoscience and Remote Sensing, 45(2)(12):4087–
4104.
Horn, B. and Schunk, B. (1981). Determining optical flow.
Artificial Intelligence, 17:185–203.
Huot, E., Herlin, I., and Papari, G. (2013). Optimal Ort-
hogonal Basis and Image Assimilation: Motion Mo-
deling. In ICCV - International Conference on Com-
puter Vision, Sydney, Australia. IEEE.
Joe, P., Dance, S., Lakshmanan, V., Heizenreder, D., James,
P., Lang, P., Hengstebeck, T., Feng, Y., Li, P., Yeung,
H.-Y., Suzuki, O., Doi, K., and Dai, J. (2012). Au-
tomated processing of doppler radar data for severe
weather warnings. In Bech, J. and Chau, J. L., editors,
Doppler Radar Observations, chapter 2. IntechOpen,
Rijeka.
Johnson, J. T., MacKeen, P. L., Witt, A., Mitchell, E. D. W.,
Stumpf, G. J., Eilts, M. D., and Thomas, K. W. (1998).
The storm cell identification and tracking algorithm:
An enhanced wsr-88d algorithm. Weather and Fore-
casting, 13(2):263–276.
Korotaev, G. K., Huot, E., Le Dimet, F.-X., Herlin, I., Stani-
chny, S., Solovyev, D., and WU, L. (2008). Retrieving
ocean surface current by 4-D variational assimilation
of sea surface temperature images. Remote Sensing
of Environment, 112(4):1464–1475. Remote Sensing
Data Assimilation Special Issue.
Le Dimet, F.-X., Antoniadis, A., Ma, J., Herlin, I., Huot, E.,
and Berroir, J.-P. (2006). Assimilation of images in
geophysical models. In Conference on International
Science and Technology for Space, Kanazawa, Japan.
Le Dimet, F.-X. and Talagrand, O. (1986). Variational al-
gorithms for analysis and assimilation of meteorologi-
cal observations: Theoretical aspects. Tellus, 38A:97–
110.
Lepoittevin, Y., B
´
er
´
eziat, D., Herlin, I., and Mercier, N.
(2013). Continuous tracking of structures from an
image sequence. In VISAPP - 8th International Con-
ference on Computer Vision Theory and Applications,
pages 386–389, Barcelone, Spain. Springer Verlag.
Lepoittevin, Y. and Herlin, I. (2015). Assimilation of ra-
dar reflectivity for rainfall nowcasting. In IGARSS -
IEEE International Geoscience and Remote Sensing
Symposium, pages 933–936, Milan, Italy.
Marshall, S. and Palmer, K. (1948). The distribution of rain-
drops with size. .J. Metrol., 5.
Shi, X., Gao, Z., Lausen, L., Wang, H., and Yeung, D.-Y.
(2017). Deep learning for precipitation nowcasting:
A benchmark and a new model. In 31st Conference
on Neural Information Processing Systems.
Stigter, C. J., Sivakumar, M. V. K., and Rijks, D. A.
(2000). Agrometeorology in the 21st century: works-
hop summary and recommendations on needs and
perspectives. Agricultural and Forest Meteorology,
103(1/2):209–227.
Titaud, O., Vidard, A., Souopgui, I., and Le Dimet, F.-X.
(2010). Assimilation of Image Sequences in Numeri-
cal Models. Tellus A, 62(1):30–47.
VISAPP 2019 - 14th International Conference on Computer Vision Theory and Applications
900