Cortes, C. and Vapnik, V. (1995). Support-vector
networks.
Mach. Learn., 20(3):273–297.
Cover, T. and Hart, P. (2006). Nearest neighbor pattern clas-
sification. IEEE Trans. Inf. Theor., 13(1):21–27.
Crandall, J. P., O, J. H., Gajwani, P., Leal, J. P.,
Mawhinney, D. D., Sterzer, F., and Wahl, R. L. (2018).
Measurement of brown adipose tissue activity using
microwave radiometry and 18f-fdg pet/ct. Journal of
nuclear medicine: official publication, Society of Nu-
clear Medicine, 59(8):12431248.
de Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. (2005). A tutorial on the cross-entropy method.
Annals of Operations Research, 134(1):19–67.
Dicke, R. H. (1982). The Measurement of Thermal Ra-
diation at Microwave Frequencies, pages 106–113.
Springer Netherlands, Dordrecht.
Drakopoulou, M., Moldovan, C., Toutouzas, K., and Tou-
soulis, D. (2018). The role of microwave radiometry in
carotid artery disease diagnostic and clinical
prospective. Current Opinion in Pharmacology, 39:99 –
104. Cardiovascular and renal.
Fahlman, S. E. and Lebiere, C. (1990). Advances in neural
information processing systems 2. chapter The
Cascade-correlation Learning Architecture, pages 524–
532. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.
Gabriel, S., Lau, R. W., and Gabriel, C. (1996a). The
dielectric properties of biological tissues: Ii.
measurements in the frequency range 10 hz to 20 ghz.
Physics in Medicine and Biology, 41(11):2251.
Gabriel, S., Lau, R. W., and Gabriel, C. (1996b). The di-
electric properties of biological tissues: III. parametric
models for the dielectric spectrum of tissues. Physics
in Medicine and Biology, 41(11):2271.
Gautherie, M. (1980). Thermopathology of breast cancer:
Measurement and analysis of in vivo temperature and
blood flow. Annals of the New York Academy of Sci-
ences, 335(1):383–415.
Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural networks.
In Teh, Y. W. and Titterington, M., editors, Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, volume 9 of Proceed-
ings of Machine Learning Research, pages 249–256,
Chia Laguna Resort, Sardinia, Italy. PMLR.
Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-
smote: A new over-sampling method in imbalanced
data sets learning. In Proceedings of the 2005 Interna-
tional Conference on Advances in Intelligent Comput-
ing - Volume Part I, ICIC’05, pages 878–887, Berlin,
Heidelberg. Springer-Verlag.
He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn:
Adaptive synthetic sampling approach for imbalanced
learning. In 2008 IEEE International Joint Confer-
ence on Neural Networks (IEEE World Congress on
Computational Intelligence), pages 1322–1328.
He, H. and Ma, Y. (2013). Imbalanced Learning: Foun-
dations, Algorithms, and Applications. Wiley-IEEE
Press, 1st edition.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. CoRR, abs/1502.03167.
Ivanov, Y., Kozlov, A. F., Galiullin, R. A., Tatur, V. Y., Zi-
borov, V. S., Ivanova, N. D., Pleshakova, T. O., Ves-
nin, S. G., and Goryanin, I. (2018). Use of microwave
radiometry to monitor thermal denaturation of albu-
min. Frontiers in Physiology, 9:956.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. CoRR, abs/1412.6980.
Kobrinskiy, B. A. (2008). Konsultativny intllktualny
mditsinski sistmy: klassifikatsiya, printsipy postron-
iya, effktivnost [consulting intelligent medical sys-
tems: Classification, principles of construction, effi-
ciency]. Volgograd, (2):38–47.
Krawczyk, B. (2016). Learning from imbalanced data: open
challenges and future directions. Progress in Artificial
Intelligence, 5(4):221–232.
Kubat, M. and Matwin, S. (1997). Addressing the curse of
imbalanced training sets: One-sided selection. In In
Proceedings of the Fourteenth International Confer-
ence on Machine Learning, pages 179–186. Morgan
Kaufmann.
Laskari, K., Pitsilka, D., Pentazos, G., Siores, E., Tek-
tonidou, M., and Sfikakis, P. (2018). Sat0657
microwave radiometry-derived thermal changes of
sacroiliac joints as a biomarker of sacroiliitis in
patients with spondyloarthropathy. Annals of the
Rheumatic Diseases, 77(Suppl 2):1178–1178.
Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000). A
compar- ison of prediction accuracy, complexity, and
training time of thirty-three old and new classification
algo- rithms. Machine Learning, 40(3):203–228.
Lin, M., Chen, Q., and Yan, S. (2013). Network in
network. CoRR, abs/1312.4400.
Losev, A. G. and Lvshinskiy, V. V. (2015). Regressionnaya
model diagnostiki patologiy molochnykh zhelez po
dannym mikrovolnovoy radiotermometrii [regression
model for diagnosis of breast pathology according to
microwaves radiometry data]. Vestnik Volgogradskogo
gosudarstvennogo universiteta. Seriya 1. Mathemat-
ica. Physica [Science Journal of Volgograd State Uni-
versity. Mathematics. Physics], 6(31):72–82.
Myers, P. C., Sadowsky, N. L., and Barrett, A. H. (1979).
Microwave thermography: Principles, methods and
clinical applications. Journal of Microwave Power,
14(2):105–115.
Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines. In Proceedings
of the 27th International Conference on International
Conference on Machine Learning, ICML’10, pages
807–814, USA. Omnipress.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine learning in
python. J. Mach. Learn. Res., 12:2825–2830.