extendibility, the Semantic Web approach is more
favourable.
ACKNOWLEDGEMENTS
This work was partially funded by the NETDI-
AMOND project, grant number POCI-01-0145-
FEDER-016385. AP is supported by FCT, grant
PD/BD/142877/2018.
REFERENCES
Alamri, A. (2018). Semantic health mediation and access
control manager for interoperability among health-
care systems. Journal of Information Technology Re-
search, 11:87–98.
Almeida, J., Ribeiro, R., and Oliveira, J. L. (2018). A mod-
ular workflow management framework. In Proceed-
ings of the 11th International Conference on Health
Informatics (HealthInf 2018).
Berners-Lee, T., Hendler, J., and Lassila, O. (2012). The
semantic web. Scientific American, 284:34–43.
Brown, J., Balaconis, E., Mazza, M., Syat, B., Rosen, R.,
Kelly, S., Swan, B., and Platt, R. (2012). Ps1-46:
Hmornnet: shared infrastructure for distributed query-
ing by hmorn collaboratives. Clinical medicine & re-
search, 10(3):163–164.
Chen, H., Yu, T., and Chen, J. Y. (2013). Semantic web
meets integrative biology: a survey. Briefings in
Bioinformatics, 14:109–125.
Cheng, H. G. and Phillips, M. R. (2014). Secondary analy-
sis of existing data: opportunities and implementation.
Shanghai archives of psychiatry, 26(6):371.
Doolan, D. M., Winters, J., and Nouredini, S. (2017). An-
swering research questions using an existing data set.
Medical Research Archives, 5(9).
Fajarda, O., Silva, L. A. B., Rijnbeek, P. R., Van Spey-
broeck, M., and Oliveira, J. L. (2018). A methodology
to perform semi-automatic distributed ehr database
queries. In HEALTHINF, pages 127–134.
Ganz, M. L., Wintfeld, N., Li, Q., Alas, V., Langer, J., and
Hammer, M. (2014). The association of body mass
index with the risk of type 2 diabetes: a case–control
study nested in an electronic health records system in
the united states. Diabetology & metabolic syndrome,
6(1):50.
Geissbuhler, A., Safran, C., Buchan, I., Bellazzi, R.,
Labkoff, S., Eilenberg, K., Leese, A., Richardson, C.,
Mantas, J., Murray, P., et al. (2013). Trustworthy reuse
of health data: a transnational perspective. Interna-
tional journal of medical informatics, 82(1):1–9.
Hitzler, P., Kr
¨
otzsch, M., Parsia, B., Patel-Schneider, P. F.,
and Rudolph, S. (2012). Owl 2 web ontology language
primer (second edition). w3c recommendation.
Hripcsak, G., Duke, J. D., Shah, N. H., Reich, C. G., Huser,
V., Schuemie, M. J., Suchard, M. A., Park, R. W.,
Wong, I. C. K., Rijnbeek, P. R., et al. (2015). Obser-
vational health data sciences and informatics (ohdsi):
opportunities for observational researchers. Studies in
health technology and informatics, 216:574.
Kahn, M. G., Batson, D., and Schilling, L. M. (2012).
Data model considerations for clinical effectiveness
researchers. Medical care, 50.
Lasierra, N., Schweitzer, M., Gorfer, T., Toma, I., and
Hoerbst, A. (2017). Building a semantic model
to enhance the user’s perceived functionality of the
ehr. Studies in Health Technology and Informatics,
228:137–141.
Lopes, P., Silva, L. B., and Oliveira, J. L. (2015). Chal-
lenges and opportunities for exploring patient-level
data. BioMed research international, 2015.
Nass, S. J., Levit, L. A., Gostin, L. O., et al. (2009). The
value, importance, and oversight of health research.
Ogunyemi, O. I., Meeker, D., Kim, H.-E., Ashish, N.,
Farzaneh, S., and Boxwala, A. (2013). Identifying
appropriate reference data models for comparative ef-
fectiveness research (cer) studies based on data from
clinical information systems. Medical care, 51:S45–
S52.
Ohmann, C. and Kuchinke, W. (2007). Meeting the chal-
lenges of patient recruitment. International Journal
of Pharmaceutical Medicine, 21(4):263–270.
Overhage, J. M., Ryan, P. B., Reich, C. G., Hartzema, A. G.,
and Stang, P. E. (2011). Validation of a common data
model for active safety surveillance research. Jour-
nal of the American Medical Informatics Association,
19(1):54–60.
Pakhomov, S., Weston, S. A., Jacobsen, S. J., Chute, C. G.,
Meverden, R., Roger, V. L., et al. (2007). Electronic
medical records for clinical research: application to
the identification of heart failure. Am J Manag Care,
13(6 Part 1):281–288.
Pisani, E. and AbouZahr, C. (2010). Sharing health data:
good intentions are not enough. Bulletin of the World
Health Organization, 88(6):462–466.
Piwowar, H. A. and Chapman, W. W. (2010). Public shar-
ing of research datasets: a pilot study of associations.
Journal of informetrics, 4(2):148–156.
Reisner, S. L., Vetters, R., Leclerc, M., Zaslow, S., Wol-
frum, S., Shumer, D., and Mimiaga, M. J. (2015).
Mental health of transgender youth in care at an ado-
lescent urban community health center: a matched ret-
rospective cohort study. Journal of Adolescent Health,
56(3):274–279.
Ross, T. R., Ng, D., Brown, J. S., Pardee, R., Hornbrook,
M. C., Hart, G., and Steiner, J. F. (2014). The hmo
research network virtual data warehouse: a public data
model to support collaboration. EGEMS, 2(1).
Schneeweiss, S. and Avorn, J. (2005). A review of uses
of health care utilization databases for epidemiologic
research on therapeutics. Journal of clinical epidemi-
ology, 58(4):323–337.
Schreiber, G. and Raimond, Y. (2015). Rdf 1.1 primer. w3c
working group note.
Sernadela, P., Gonz
´
alez-Castro, L., and Oliveira, J. (2017).
Scaleus: Semantic web services integration for
HEALTHINF 2019 - 12th International Conference on Health Informatics
472