REFERENCES
Anderson, J. W., Tataru, P., Staines, J., Hein, J., and Lyngsø,
R. (2012). Evolving stochastic context-free grammars
for RNA secondary structure prediction. BMC bioin-
formatics, 13(1):78.
Andronescu, M., Bereg, V., Hoos, H. H., and Condon, A.
(2008). RNA STRAND: the RNA secondary structure
and statistical analysis database. BMC bioinformatics,
9(1):340.
Backofen, R. and Siebert, S. (2007). Fast detection of com-
mon sequence structure patterns in RNAs. Journal of
Discrete Algorithms, 5(2):212–228.
Chen, J.-L., Blasco, M. A., and Greider, C. W. (2000). Sec-
ondary Structure of Vertebrate Telomerase RNA. Cell,
100(5):503–514.
Chomsky, N. and Sch
¨
utzenberger, M. P. (1963). The al-
gebraic theory of context-free languages. In Studies
in Logic and the Foundations of Mathematics, vol-
ume 35, pages 118–161. Elsevier.
Cserkuti, P., Levendovszky, T., and Charaf, H. (2006).
Survey on Subtree Matching. In 2006 International
Conference on Intelligent Engineering Systems, pages
216–221. IEEE.
Dill, K. A. (1990). Dominant forces in protein folding. Bio-
chemistry, 29(31):7133–7155.
Dowell, R. D. and Eddy, S. R. (2004). Evaluation of sev-
eral lightweight stochastic context-free grammars for
RNA secondary structure prediction. BMC bioinfor-
matics, 5(1):71.
Expression Tester (2018). Java Regular Expression Tester.
Accessed 20 November 2018.
Ferr
´
e-D’Amar
´
e, A. R. and Doudna, J. A. (1999). Rna folds:
insights from recent crystal structures. Annual review
of biophysics and biomolecular structure, 28(1):57–
73.
Giegerich, R. (2014). Introduction to stochastic context
free grammars. In RNA Sequence, Structure, and
Function: Computational and Bioinformatic Meth-
ods, pages 85–106. Springer.
Gilbert, N. and Porter, T. (1994). Knots and Surfaces. Ox-
ford University Press, UK.
Harrison, M. A. (1978). Introduction to Formal Language
Theory. Addison-Wesley Longman Publishing Co.,
Inc.
H
¨
ochsmann, M., Toller, T., Giegerich, R., and Kurtz, S.
(2003). Local similarity in RNA secondary structures.
In Bioinformatics Conference, 2003. CSB 2003. Pro-
ceedings of the 2003 IEEE, pages 159–168. IEEE.
H
¨
ochsmann, M., Voss, B., and Giegerich, R. (2004). Pure
Multiple RNA Secondary Structure Alignments: A
Progressive Profile Approach. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics,
1(1):53–62.
Jiang, T., Lin, G., Ma, B., and Zhang, K. (2002). A General
Edit Distance between RNA Structures. Journal of
Computational Biology, 9(2):371–388.
Knudsen, B. and Hein, J. (1999). RNA secondary structure
prediction using stochastic context-free grammars and
evolutionary history. Bioinformatics, 15(6):446–454.
Knudsen, B. and Hein, J. (2003). Pfold: RNA sec-
ondary structure prediction using stochastic context-
free grammars. Nucleic Acids Research, 31(13):3423–
3428.
Li, K., Rahman, R., Gupta, A., Siddavatam, P., and Grib-
skov, M. (2008). Pattern matching in RNA struc-
tures. In International Symposium on Bioinformatics
Research and Applications, pages 317–330. Springer.
Mauri, G. and Pavesi, G. (2005). Algorithms for pattern
matching and discovery in RNA secondary structure.
Theoretical Computer Science, 335(1):29–51.
Penner, R. C., Knudsen, M., Wiuf, C., and Andersen, J. E.
(2010). Fatgraph models of proteins. Communica-
tions on Pure and Applied Mathematics, 63(10):1249–
1297.
Quadrini, M., Culmone, R., and Merelli, E. (2017). Topo-
logical Classification of RNA Structures via Intersec-
tion Graph. In Theory and Practice of Natural Com-
puting. TPNC 2017, volume 10687 of Lecture Notes
in Computer Science, pages 203–215. Springer.
Quadrini, M. and Merelli, E. (2018). Loop-loop Interaction
Metrics on RNA Secondary Structures with Pseudo-
knots. In Proceedings of the 11th International Joint
Conference on Biomedical Engineering Systems and
Technologies - Volume 4: BIOINFORMATICS, pages
29–37, Set
´
ubal, Portugal.
Quadrini, M., Tesei, L., and Merelli, E. (2018). An Al-
gebraic Language for RNA Pseudoknots Comparison.
Accepted by BMC Bioinformatics.
Rivas, E. and Eddy, S. R. (2000). The language of RNA: a
formal grammar that includes pseudoknots. Bioinfor-
matics, 16(4):334–340.
Sakakibara, Y., Brown, M., Hughey, R., Mian, I. S.,
Sj
¨
olander, K., Underwood, R. C., and Haussler, D.
(1994). Stochastic context-free grammers for tRNA
modeling. Nucleic Acids Research, 22(23):5112–
5120.
Wang, J. T., Shapiro, B. A., Shasha, D., Zhang, K., and
Currey, K. M. (1998). An algorithm for finding the
largest approximately common substructures of two
trees. IEEE Transactions on Pattern Analysis & Ma-
chine Intelligence, (8):889–895.
Waterman, M. S. and Smith, T. F. (1978). RNA secondary
structure: A complete mathematical analysis. Mathe-
matical Biosciences, 42(3-4):257–266.
Zuker, M. (2003). Mfold web server for nucleic acid folding
and hybridization prediction. Nucleic Acids Research,
31(13):3406–3415.
Zuker, M. and Stiegler, P. (1981). Optimal computer fold-
ing of large RNA sequences using thermodynamics
and auxiliary information. Nucleic Acids Research,
9(1):133–148.
APPENDIX A
Taking advantage of the Chomsky-Schutzenberger
enumeration theorem, that allows one to construct an
BIOINFORMATICS 2019 - 10th International Conference on Bioinformatics Models, Methods and Algorithms
308